Normalized defining polynomial
\( x^{16} - x^{15} + 256 x^{14} - 256 x^{13} + 27031 x^{12} - 27031 x^{11} + 1518781 x^{10} - 1518781 x^{9} + 48853156 x^{8} - 48853156 x^{7} + 900871906 x^{6} - 900871906 x^{5} + 9033778156 x^{4} - 9033778156 x^{3} + 43889090656 x^{2} - 43889090656 x + 87458231281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(548747431866424450523939019858833=17^{15}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1037=17\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1037}(1,·)$, $\chi_{1037}(975,·)$, $\chi_{1037}(977,·)$, $\chi_{1037}(916,·)$, $\chi_{1037}(853,·)$, $\chi_{1037}(792,·)$, $\chi_{1037}(733,·)$, $\chi_{1037}(670,·)$, $\chi_{1037}(672,·)$, $\chi_{1037}(609,·)$, $\chi_{1037}(611,·)$, $\chi_{1037}(487,·)$, $\chi_{1037}(489,·)$, $\chi_{1037}(243,·)$, $\chi_{1037}(182,·)$, $\chi_{1037}(123,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11482735951} a^{9} + \frac{4393463955}{11482735951} a^{8} + \frac{135}{11482735951} a^{7} - \frac{990179146}{11482735951} a^{6} + \frac{6075}{11482735951} a^{5} - \frac{2683510122}{11482735951} a^{4} + \frac{101250}{11482735951} a^{3} + \frac{2246086389}{11482735951} a^{2} + \frac{455625}{11482735951} a - \frac{2965297990}{11482735951}$, $\frac{1}{11482735951} a^{10} + \frac{150}{11482735951} a^{8} + \frac{2994456381}{11482735951} a^{7} + \frac{7875}{11482735951} a^{6} + \frac{4384049328}{11482735951} a^{5} + \frac{168750}{11482735951} a^{4} + \frac{5211384379}{11482735951} a^{3} + \frac{1265625}{11482735951} a^{2} - \frac{1104192986}{11482735951} a + \frac{1518750}{11482735951}$, $\frac{1}{11482735951} a^{11} - \frac{1509187662}{11482735951} a^{8} - \frac{12375}{11482735951} a^{7} + \frac{3635353865}{11482735951} a^{6} - \frac{742500}{11482735951} a^{5} - \frac{5640591557}{11482735951} a^{4} - \frac{13921875}{11482735951} a^{3} - \frac{5017808757}{11482735951} a^{2} - \frac{66825000}{11482735951} a - \frac{3032003589}{11482735951}$, $\frac{1}{11482735951} a^{12} - \frac{14850}{11482735951} a^{8} + \frac{686441117}{11482735951} a^{7} - \frac{1039500}{11482735951} a^{6} - \frac{548833805}{11482735951} a^{5} - \frac{25059375}{11482735951} a^{4} - \frac{534331214}{11482735951} a^{3} - \frac{200475000}{11482735951} a^{2} - \frac{80458572}{11482735951} a - \frac{250593750}{11482735951}$, $\frac{1}{11482735951} a^{13} - \frac{1279500715}{11482735951} a^{8} + \frac{965250}{11482735951} a^{7} + \frac{4675601326}{11482735951} a^{6} + \frac{65154375}{11482735951} a^{5} - \frac{5565892944}{11482735951} a^{4} + \frac{1303087500}{11482735951} a^{3} - \frac{3045519577}{11482735951} a^{2} - \frac{4967298451}{11482735951} a + \frac{1617220585}{11482735951}$, $\frac{1}{11482735951} a^{14} + \frac{1228500}{11482735951} a^{8} + \frac{5167158586}{11482735951} a^{7} + \frac{96744375}{11482735951} a^{6} + \frac{5071447805}{11482735951} a^{5} + \frac{2487712500}{11482735951} a^{4} - \frac{1825125009}{11482735951} a^{3} - \frac{2234534402}{11482735951} a^{2} - \frac{4373739810}{11482735951} a + \frac{3688590598}{11482735951}$, $\frac{1}{11482735951} a^{15} + \frac{2870321028}{11482735951} a^{8} - \frac{69103125}{11482735951} a^{7} + \frac{5036603669}{11482735951} a^{6} - \frac{4975425000}{11482735951} a^{5} - \frac{3131780109}{11482735951} a^{4} - \frac{310063941}{11482735951} a^{3} + \frac{2911870892}{11482735951} a^{2} - \frac{4875396254}{11482735951} a + \frac{5048468103}{11482735951}$
Class group and class number
$C_{1265378}$, which has order $1265378$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 61 | Data not computed | ||||||