Normalized defining polynomial
\( x^{16} - 4 x^{15} + 63 x^{14} - 55 x^{13} + 1046 x^{12} - 1005 x^{11} + 9225 x^{10} - 13208 x^{9} + 60260 x^{8} - 83761 x^{7} + 250634 x^{6} - 324957 x^{5} + 635768 x^{4} - 609071 x^{3} + 843018 x^{2} - 527756 x + 463589 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5475486929215895672663613034489=37^{14}\cdot 157^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{37} a^{8} - \frac{2}{37} a^{7} + \frac{11}{37} a^{6} + \frac{13}{37} a^{5} - \frac{11}{37} a^{4} + \frac{17}{37} a^{3} - \frac{16}{37} a^{2} + \frac{17}{37} a - \frac{4}{37}$, $\frac{1}{37} a^{9} + \frac{7}{37} a^{7} - \frac{2}{37} a^{6} + \frac{15}{37} a^{5} - \frac{5}{37} a^{4} + \frac{18}{37} a^{3} - \frac{15}{37} a^{2} - \frac{7}{37} a - \frac{8}{37}$, $\frac{1}{37} a^{10} + \frac{12}{37} a^{7} + \frac{12}{37} a^{6} + \frac{15}{37} a^{5} - \frac{16}{37} a^{4} + \frac{14}{37} a^{3} - \frac{6}{37} a^{2} - \frac{16}{37} a - \frac{9}{37}$, $\frac{1}{37} a^{11} - \frac{1}{37} a^{7} - \frac{6}{37} a^{6} + \frac{13}{37} a^{5} - \frac{2}{37} a^{4} + \frac{12}{37} a^{3} - \frac{9}{37} a^{2} + \frac{9}{37} a + \frac{11}{37}$, $\frac{1}{259} a^{12} - \frac{3}{259} a^{11} + \frac{2}{259} a^{10} + \frac{1}{259} a^{9} - \frac{1}{259} a^{8} - \frac{46}{259} a^{7} + \frac{16}{259} a^{6} + \frac{78}{259} a^{5} - \frac{19}{259} a^{4} + \frac{1}{259} a^{3} + \frac{120}{259} a^{2} - \frac{129}{259} a + \frac{18}{37}$, $\frac{1}{259} a^{13} + \frac{2}{259} a^{9} - \frac{52}{259} a^{7} + \frac{3}{37} a^{6} + \frac{61}{259} a^{5} + \frac{3}{37} a^{4} - \frac{94}{259} a^{3} - \frac{8}{37} a^{2} - \frac{30}{259} a + \frac{9}{37}$, $\frac{1}{259} a^{14} + \frac{2}{259} a^{10} - \frac{3}{259} a^{8} - \frac{11}{37} a^{7} + \frac{82}{259} a^{6} - \frac{17}{37} a^{5} - \frac{115}{259} a^{4} - \frac{1}{7} a^{2} + \frac{17}{37} a + \frac{9}{37}$, $\frac{1}{1665964083343730418972737649839} a^{15} + \frac{374832420871999053119955019}{1665964083343730418972737649839} a^{14} + \frac{253564495793350011496261561}{237994869049104345567533949977} a^{13} + \frac{1411496743652596644565428631}{1665964083343730418972737649839} a^{12} - \frac{15115851542354452707887048388}{1665964083343730418972737649839} a^{11} - \frac{5095296845445971996535606635}{1665964083343730418972737649839} a^{10} - \frac{21841435391112110987569121611}{1665964083343730418972737649839} a^{9} - \frac{20687648307275706039857875884}{1665964083343730418972737649839} a^{8} - \frac{621566233818204362786005868174}{1665964083343730418972737649839} a^{7} + \frac{59381790371636264303670864152}{237994869049104345567533949977} a^{6} + \frac{455534654491621679509315660146}{1665964083343730418972737649839} a^{5} + \frac{92312879850453862531304786906}{1665964083343730418972737649839} a^{4} + \frac{6600191850223992798148470997}{1665964083343730418972737649839} a^{3} - \frac{566794327832444073669832810443}{1665964083343730418972737649839} a^{2} - \frac{579570547247434982354278139898}{1665964083343730418972737649839} a - \frac{94673990773731685309393186853}{237994869049104345567533949977}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 839406602.571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 8.0.402819046213.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $157$ | $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 157.2.1.2 | $x^{2} + 785$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 157.4.3.4 | $x^{4} + 19625$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |