Normalized defining polynomial
\( x^{16} - 3 x^{15} - 260 x^{14} - 440 x^{13} + 16099 x^{12} + 73652 x^{11} + 586457 x^{10} + 7217528 x^{9} + 31631282 x^{8} + 162727605 x^{7} + 1300334847 x^{6} + 4874750016 x^{5} + 18102947155 x^{4} + 99957289357 x^{3} + 250721809619 x^{2} + 542456662935 x + 1934079109825 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(546464962373097060033371075256437529131129=11^{12}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $406.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{22} a^{10} - \frac{3}{11} a^{9} + \frac{1}{22} a^{8} + \frac{4}{11} a^{7} - \frac{3}{11} a^{6} - \frac{3}{22} a^{5} + \frac{9}{22} a^{4} - \frac{2}{11} a^{3} + \frac{9}{22} a^{2} - \frac{7}{22} a + \frac{1}{22}$, $\frac{1}{22} a^{11} + \frac{9}{22} a^{9} - \frac{4}{11} a^{8} - \frac{1}{11} a^{7} + \frac{5}{22} a^{6} - \frac{9}{22} a^{5} + \frac{3}{11} a^{4} + \frac{7}{22} a^{3} + \frac{3}{22} a^{2} + \frac{3}{22} a + \frac{3}{11}$, $\frac{1}{110} a^{12} + \frac{1}{110} a^{11} - \frac{3}{10} a^{9} + \frac{3}{110} a^{8} + \frac{41}{110} a^{7} + \frac{3}{55} a^{6} + \frac{23}{55} a^{5} - \frac{1}{55} a^{4} + \frac{12}{55} a^{3} - \frac{53}{110} a^{2} + \frac{3}{55} a - \frac{5}{22}$, $\frac{1}{110} a^{13} - \frac{1}{110} a^{11} + \frac{1}{55} a^{10} + \frac{23}{55} a^{9} - \frac{37}{110} a^{8} + \frac{5}{22} a^{7} + \frac{5}{11} a^{6} - \frac{43}{110} a^{5} + \frac{1}{10} a^{4} + \frac{3}{110} a^{3} + \frac{2}{5} a^{2} + \frac{27}{55} a - \frac{5}{11}$, $\frac{1}{550} a^{14} + \frac{1}{275} a^{13} + \frac{1}{550} a^{12} - \frac{4}{275} a^{11} + \frac{1}{55} a^{10} - \frac{81}{550} a^{9} - \frac{113}{550} a^{8} - \frac{59}{275} a^{7} - \frac{71}{550} a^{6} + \frac{7}{550} a^{5} + \frac{261}{550} a^{4} + \frac{39}{275} a^{3} - \frac{122}{275} a^{2} - \frac{1}{55} a - \frac{5}{11}$, $\frac{1}{466510932269314053332968431267038665212767675432885199526357484506985550550} a^{15} + \frac{87381151579054008959183074349491010021238999539984674465882783372289069}{233255466134657026666484215633519332606383837716442599763178742253492775275} a^{14} + \frac{1402672964342360994499073913328567353315955858471784013410731946839852913}{466510932269314053332968431267038665212767675432885199526357484506985550550} a^{13} + \frac{750928931474214046008802897350164802942249166976100486425872001681761889}{233255466134657026666484215633519332606383837716442599763178742253492775275} a^{12} - \frac{1967979319131559975564367692277808905417349318555921948022166537126953134}{233255466134657026666484215633519332606383837716442599763178742253492775275} a^{11} + \frac{2346827811473480564748415849459686301916645579883133440065686072902263467}{233255466134657026666484215633519332606383837716442599763178742253492775275} a^{10} + \frac{5120033595872140027763648832894650631608811090066805681860054829541867151}{42410084751755823030269857387912605928433425039353199956941589500635050050} a^{9} - \frac{215064542375152722251513947794246469706944543151147930857092404009257614041}{466510932269314053332968431267038665212767675432885199526357484506985550550} a^{8} + \frac{113213850370422349534254592986754780395099326773586072718969390477030746031}{466510932269314053332968431267038665212767675432885199526357484506985550550} a^{7} - \frac{201209922171595302042623090265430649204627676757777898298521162863102874899}{466510932269314053332968431267038665212767675432885199526357484506985550550} a^{6} + \frac{85278514489479322358648496752488218389025118007964345253142102124717906709}{233255466134657026666484215633519332606383837716442599763178742253492775275} a^{5} - \frac{36020690139916538370319678698497078868484400958377508774653559733411402161}{466510932269314053332968431267038665212767675432885199526357484506985550550} a^{4} - \frac{107798447094322265691186837463479200699387087774498476217367196686232618958}{233255466134657026666484215633519332606383837716442599763178742253492775275} a^{3} + \frac{161200244714373229706051918160484966184868944080201253107048614983813689791}{466510932269314053332968431267038665212767675432885199526357484506985550550} a^{2} - \frac{4618885730389054609952984120084623779205465541570324541014624550748320741}{18660437290772562133318737250681546608510707017315407981054299380279422022} a - \frac{103301026458204600054182778876368980255193615192057412797356951047252543}{18660437290772562133318737250681546608510707017315407981054299380279422022}$
Class group and class number
$C_{4}\times C_{32}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13163017928100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-979}) \), 4.0.85301249.1, 8.0.647590974205440089.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 89 | Data not computed | ||||||