Normalized defining polynomial
\( x^{16} - 445 x^{13} + 6942 x^{12} - 52866 x^{11} + 213155 x^{10} - 1125939 x^{9} + 8058060 x^{8} - 48094621 x^{7} + 168888625 x^{6} - 116994683 x^{5} - 374685728 x^{4} - 2204993690 x^{3} + 34121567244 x^{2} - 140857502107 x + 182391223777 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(546464962373097060033371075256437529131129=11^{12}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $406.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{22} a^{12} + \frac{2}{11} a^{11} - \frac{1}{22} a^{10} + \frac{2}{11} a^{9} - \frac{3}{11} a^{8} - \frac{1}{22} a^{7} - \frac{9}{22} a^{6} - \frac{2}{11} a^{5} - \frac{5}{22} a^{4} - \frac{1}{22} a^{3} + \frac{1}{22} a^{2} + \frac{1}{11} a + \frac{2}{11}$, $\frac{1}{22} a^{13} + \frac{5}{22} a^{11} - \frac{3}{22} a^{10} - \frac{5}{11} a^{8} - \frac{5}{22} a^{7} + \frac{5}{11} a^{6} + \frac{4}{11} a^{4} + \frac{5}{22} a^{3} + \frac{9}{22} a^{2} + \frac{7}{22} a - \frac{5}{22}$, $\frac{1}{242} a^{14} + \frac{1}{121} a^{13} + \frac{3}{242} a^{12} + \frac{43}{242} a^{11} + \frac{7}{242} a^{10} - \frac{9}{121} a^{9} - \frac{45}{121} a^{8} + \frac{23}{121} a^{7} - \frac{58}{121} a^{6} - \frac{61}{242} a^{5} + \frac{43}{121} a^{4} + \frac{87}{242} a^{3} + \frac{28}{121} a^{2} + \frac{52}{121} a - \frac{29}{242}$, $\frac{1}{2477488102962349181410792022398895477953400835521868014966618764293430} a^{15} + \frac{242639845725760696767875149063145532857561911598255938011789587124}{176963435925882084386485144457063962710957202537276286783329911735245} a^{14} + \frac{197921832992180716544774981099176930180321446450856155764384851589}{176963435925882084386485144457063962710957202537276286783329911735245} a^{13} - \frac{22191672366474140219823487643449241620860681784396330178462111374242}{1238744051481174590705396011199447738976700417760934007483309382146715} a^{12} + \frac{50364183922532057959988951979131813711882056889895598242623727858694}{1238744051481174590705396011199447738976700417760934007483309382146715} a^{11} - \frac{272044094821791751072520430348039779660542564865114000481586955842403}{2477488102962349181410792022398895477953400835521868014966618764293430} a^{10} + \frac{3380982659966577503731686217194440731073325414495819134126304111466}{10237554144472517278556991828094609413030581964966396756060408116915} a^{9} - \frac{813826949827416572684346372703987265042390982479016614782218950295477}{2477488102962349181410792022398895477953400835521868014966618764293430} a^{8} - \frac{499325062114727938130522788417612297374438574931595774420049510066611}{1238744051481174590705396011199447738976700417760934007483309382146715} a^{7} - \frac{246435924815461589496639229533123209192547004864636193862034522690269}{1238744051481174590705396011199447738976700417760934007483309382146715} a^{6} - \frac{1118020501235688886384283993083440582600939258195081804409435238278553}{2477488102962349181410792022398895477953400835521868014966618764293430} a^{5} - \frac{718580371999374102436345768715535604375419742576115906222424354546801}{2477488102962349181410792022398895477953400835521868014966618764293430} a^{4} + \frac{22376626324543681463290441596159583966663801531896692804859243724552}{65197055341114452142389263747339354682984232513733368814911020112985} a^{3} + \frac{52754304557230643166837993268528585700867273054130124464313924318541}{225226191178395380128253820218081407086672803229260728633328978572130} a^{2} + \frac{47929809901556641442546304776648997665806846075285353764467720240665}{495497620592469836282158404479779095590680167104373602993323752858686} a + \frac{9847126868103228997275989212485899261950837327090551744343084488897}{176963435925882084386485144457063962710957202537276286783329911735245}$
Class group and class number
$C_{4}\times C_{32}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3694538597510 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-979}) \), 4.0.85301249.1, 8.0.647590974205440089.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 89 | Data not computed | ||||||