Normalized defining polynomial
\( x^{16} - 4 x^{15} + 42 x^{14} - 230 x^{13} + 1266 x^{12} - 4418 x^{11} + 14360 x^{10} - 41668 x^{9} + 124109 x^{8} - 286190 x^{7} + 453076 x^{6} - 383612 x^{5} - 42224 x^{4} + 413450 x^{3} - 222246 x^{2} - 123442 x + 250591 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(545664914012032080281600000000=2^{24}\cdot 5^{8}\cdot 13^{6}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{22} a^{13} - \frac{5}{22} a^{12} + \frac{1}{11} a^{11} + \frac{2}{11} a^{10} - \frac{5}{22} a^{9} + \frac{5}{22} a^{8} - \frac{3}{11} a^{7} - \frac{5}{11} a^{6} + \frac{1}{22} a^{5} - \frac{5}{22} a^{4} - \frac{5}{11} a^{3} + \frac{3}{11} a^{2} - \frac{1}{11} a$, $\frac{1}{22} a^{14} - \frac{1}{22} a^{12} + \frac{3}{22} a^{11} + \frac{2}{11} a^{10} + \frac{1}{11} a^{9} - \frac{3}{22} a^{8} - \frac{7}{22} a^{7} + \frac{3}{11} a^{6} + \frac{9}{22} a^{4} - \frac{1}{2} a^{3} - \frac{5}{22} a^{2} - \frac{5}{11} a$, $\frac{1}{1603026568024763751338757040253995523137658} a^{15} + \frac{524342893465368447030966669680548016895}{801513284012381875669378520126997761568829} a^{14} + \frac{16223393976354822777549714186877188306714}{801513284012381875669378520126997761568829} a^{13} + \frac{156419260677962213510578216949420805157119}{1603026568024763751338757040253995523137658} a^{12} + \frac{216966489625211121280677726711438110533589}{1603026568024763751338757040253995523137658} a^{11} - \frac{97069659475460671873149642588137291541052}{801513284012381875669378520126997761568829} a^{10} - \frac{545388867622115677361989171603559193156}{72864844001125625060852592738817978324439} a^{9} - \frac{362044695422701729057250082856104699602359}{1603026568024763751338757040253995523137658} a^{8} + \frac{422415443508061032463989812975916573720413}{1603026568024763751338757040253995523137658} a^{7} - \frac{103517992798987765101738346205681270805017}{801513284012381875669378520126997761568829} a^{6} + \frac{306802622996277832219732866579281115337189}{801513284012381875669378520126997761568829} a^{5} - \frac{43138137754231494576857912269418277903499}{145729688002251250121705185477635956648878} a^{4} + \frac{174024788092379679681550799679485038752576}{801513284012381875669378520126997761568829} a^{3} + \frac{320000846036774821212698379186686016035569}{801513284012381875669378520126997761568829} a^{2} + \frac{102359700659558764311635560783995964507126}{801513284012381875669378520126997761568829} a - \frac{17246572096944675746049461843516705928450}{72864844001125625060852592738817978324439}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17925777.4975 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1558 are not computed |
| Character table for t16n1558 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.659478560000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 13.8.6.4 | $x^{8} - 13 x^{4} + 338$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 29.8.7.3 | $x^{8} + 58$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |