Normalized defining polynomial
\( x^{16} - 4 x^{15} + 30 x^{14} - 130 x^{13} + 480 x^{12} - 1062 x^{11} + 1758 x^{10} - 1790 x^{9} + 2070 x^{8} - 3150 x^{7} + 7638 x^{6} - 12792 x^{5} + 16655 x^{4} - 15200 x^{3} + 9870 x^{2} - 4374 x + 1021 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54419558400000000000000=2^{24}\cdot 3^{12}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{5} + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{7} + \frac{1}{5} a^{2}$, $\frac{1}{145} a^{13} + \frac{4}{145} a^{12} + \frac{2}{145} a^{11} - \frac{1}{145} a^{10} - \frac{1}{29} a^{9} + \frac{12}{145} a^{8} + \frac{3}{145} a^{7} - \frac{46}{145} a^{6} - \frac{42}{145} a^{5} - \frac{3}{29} a^{4} + \frac{6}{145} a^{3} + \frac{39}{145} a^{2} + \frac{2}{145} a - \frac{36}{145}$, $\frac{1}{4205} a^{14} + \frac{11}{4205} a^{13} + \frac{349}{4205} a^{12} + \frac{71}{4205} a^{11} - \frac{43}{841} a^{10} - \frac{81}{4205} a^{9} + \frac{8}{145} a^{8} + \frac{1831}{4205} a^{7} + \frac{506}{4205} a^{6} + \frac{474}{4205} a^{5} + \frac{1003}{4205} a^{4} + \frac{1241}{4205} a^{3} + \frac{507}{4205} a^{2} - \frac{132}{841} a - \frac{1006}{4205}$, $\frac{1}{159492809111368609645} a^{15} - \frac{12198852223877191}{159492809111368609645} a^{14} - \frac{247556086101422821}{159492809111368609645} a^{13} - \frac{11946600911291456913}{159492809111368609645} a^{12} + \frac{3152908455059951776}{31898561822273721929} a^{11} - \frac{6208486550396567977}{159492809111368609645} a^{10} - \frac{2752179901240407472}{159492809111368609645} a^{9} - \frac{8738054506150959548}{159492809111368609645} a^{8} - \frac{28576878214772569194}{159492809111368609645} a^{7} - \frac{41713906770765971013}{159492809111368609645} a^{6} - \frac{295846719902895817}{5499752038323055505} a^{5} - \frac{12541746336670219741}{159492809111368609645} a^{4} + \frac{19666684093303142973}{159492809111368609645} a^{3} - \frac{8936062630923605571}{159492809111368609645} a^{2} - \frac{2639138445130304397}{5499752038323055505} a - \frac{5527653141610802436}{31898561822273721929}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3121.7160225 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{60})^+\), 8.0.14580000000.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||