Normalized defining polynomial
\( x^{16} - 5 x^{15} - 59 x^{14} - 355 x^{13} + 2757 x^{12} + 38575 x^{11} + 76998 x^{10} - 1276065 x^{9} + 40270 x^{8} + 15027260 x^{7} + 51825752 x^{6} - 512018190 x^{5} + 1751927332 x^{4} - 4935660000 x^{3} + 10347212754 x^{2} - 11733017535 x + 5267375811 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54377966460580450275755400738525390625=5^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $228.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2}$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{27} a^{7} - \frac{1}{27} a^{6} - \frac{1}{9} a^{5} - \frac{8}{27} a^{4} - \frac{1}{3} a^{3} - \frac{1}{27} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{11} - \frac{2}{81} a^{10} + \frac{7}{81} a^{8} + \frac{2}{81} a^{7} + \frac{1}{81} a^{5} - \frac{1}{9} a^{4} - \frac{40}{81} a^{3} + \frac{10}{27} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{729} a^{13} - \frac{1}{243} a^{12} + \frac{1}{243} a^{11} + \frac{17}{729} a^{10} - \frac{11}{729} a^{9} - \frac{53}{729} a^{8} - \frac{26}{729} a^{7} - \frac{116}{729} a^{6} + \frac{41}{729} a^{5} + \frac{32}{729} a^{4} + \frac{82}{729} a^{3} - \frac{103}{243} a^{2} + \frac{17}{81} a + \frac{7}{27}$, $\frac{1}{1113183} a^{14} - \frac{343}{1113183} a^{13} - \frac{568}{371061} a^{12} + \frac{10607}{1113183} a^{11} + \frac{54905}{1113183} a^{10} - \frac{6061}{371061} a^{9} - \frac{15161}{371061} a^{8} + \frac{40186}{371061} a^{7} - \frac{19892}{1113183} a^{6} - \frac{39646}{371061} a^{5} - \frac{526201}{1113183} a^{4} + \frac{85832}{1113183} a^{3} + \frac{52081}{371061} a^{2} - \frac{1115}{123687} a + \frac{28}{81}$, $\frac{1}{632559759308874602754566767941769434038938314648704417884971} a^{15} - \frac{236481567198962454740098391753813991270039630411288208}{632559759308874602754566767941769434038938314648704417884971} a^{14} - \frac{3149851982251597450155155972715459188505942144215561753}{9167532743606878300790822723793759913607801661575426346159} a^{13} - \frac{2286729354482377800633586164248511000071728695912163009804}{632559759308874602754566767941769434038938314648704417884971} a^{12} - \frac{10099407180601230182025649986526664570672171390088184296124}{632559759308874602754566767941769434038938314648704417884971} a^{11} + \frac{325494425914714084193399710132503274168626186597095037995}{70284417700986066972729640882418826004326479405411601987219} a^{10} - \frac{1278344786963888834133582826299587924626512006056175209965}{210853253102958200918188922647256478012979438216234805961657} a^{9} - \frac{7088883706057661843983040808882734393156650422816828539500}{210853253102958200918188922647256478012979438216234805961657} a^{8} - \frac{13041103176489697538662675400722412221876708897774082971766}{632559759308874602754566767941769434038938314648704417884971} a^{7} - \frac{5801709462036138362654241352579793261933088880168605255101}{210853253102958200918188922647256478012979438216234805961657} a^{6} + \frac{45688611813402123205364790963963003807011248118673835689332}{632559759308874602754566767941769434038938314648704417884971} a^{5} + \frac{3481523290672644715701098366017161731180404339885884861182}{632559759308874602754566767941769434038938314648704417884971} a^{4} + \frac{91372946242210131035338288448108842485650072311313484033682}{210853253102958200918188922647256478012979438216234805961657} a^{3} - \frac{13792424794994450880812838523962019444924697485260656793791}{70284417700986066972729640882418826004326479405411601987219} a^{2} - \frac{6474311303908502623385081190204762740993561009877246470485}{23428139233662022324243213627472942001442159801803867329073} a - \frac{572603908925068854433664181936694635051035400476587066}{5114197606125741611928228253104767954909879895613155933}$
Class group and class number
$C_{99}\times C_{396}$, which has order $39204$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1182290911.59 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.9725425.1, 8.8.172615601860890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 73 | Data not computed | ||||||