Normalized defining polynomial
\( x^{16} - 6 x^{15} + 24 x^{14} - 61 x^{13} + 126 x^{12} - 213 x^{11} + 356 x^{10} - 603 x^{9} + 1012 x^{8} - 1522 x^{7} + 1901 x^{6} - 1932 x^{5} + 1526 x^{4} - 929 x^{3} + 414 x^{2} - 124 x + 31 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5416892584228515625=5^{14}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{41} a^{14} - \frac{11}{41} a^{13} + \frac{5}{41} a^{12} - \frac{10}{41} a^{11} + \frac{11}{41} a^{10} - \frac{20}{41} a^{9} + \frac{11}{41} a^{8} + \frac{2}{41} a^{7} - \frac{17}{41} a^{6} + \frac{14}{41} a^{5} + \frac{14}{41} a^{4} - \frac{4}{41} a^{3} + \frac{18}{41} a^{2} + \frac{15}{41} a - \frac{9}{41}$, $\frac{1}{1910291639} a^{15} + \frac{3381440}{1910291639} a^{14} + \frac{921525412}{1910291639} a^{13} - \frac{689178970}{1910291639} a^{12} - \frac{91112409}{1910291639} a^{11} - \frac{367942976}{1910291639} a^{10} - \frac{256327491}{1910291639} a^{9} - \frac{58512018}{1910291639} a^{8} - \frac{220551037}{1910291639} a^{7} - \frac{24967020}{1910291639} a^{6} - \frac{735290263}{1910291639} a^{5} - \frac{461930981}{1910291639} a^{4} - \frac{819233432}{1910291639} a^{3} - \frac{824922754}{1910291639} a^{2} + \frac{8110610}{46592479} a - \frac{243535233}{1910291639}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{519552898}{1910291639} a^{15} + \frac{2637555254}{1910291639} a^{14} - \frac{9418365380}{1910291639} a^{13} + \frac{19858805844}{1910291639} a^{12} - \frac{36166199227}{1910291639} a^{11} + \frac{54689811740}{1910291639} a^{10} - \frac{95138354282}{1910291639} a^{9} + \frac{167104672457}{1910291639} a^{8} - \frac{270232802221}{1910291639} a^{7} + \frac{358587856232}{1910291639} a^{6} - \frac{366196534525}{1910291639} a^{5} + \frac{292914137453}{1910291639} a^{4} - \frac{171337566531}{1910291639} a^{3} + \frac{76288864160}{1910291639} a^{2} - \frac{25988482774}{1910291639} a + \frac{4934395132}{1910291639} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2713.04336648 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.3875.1, \(\Q(\zeta_{5})\), 4.2.775.1, 8.0.75078125.1 x2, 8.0.15015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 31 | Data not computed | ||||||