Normalized defining polynomial
\( x^{16} - 8 x^{15} + 100 x^{14} - 560 x^{13} + 4186 x^{12} - 18200 x^{11} + 101264 x^{10} - 351880 x^{9} + 1570907 x^{8} - 4351384 x^{7} + 16096672 x^{6} - 34360072 x^{5} + 106670842 x^{4} - 160536640 x^{3} + 418600684 x^{2} - 343425912 x + 745835231 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53902309800791645700994109538304=2^{62}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1376=2^{5}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1376}(1,·)$, $\chi_{1376}(517,·)$, $\chi_{1376}(257,·)$, $\chi_{1376}(1033,·)$, $\chi_{1376}(429,·)$, $\chi_{1376}(85,·)$, $\chi_{1376}(345,·)$, $\chi_{1376}(601,·)$, $\chi_{1376}(861,·)$, $\chi_{1376}(773,·)$, $\chi_{1376}(945,·)$, $\chi_{1376}(173,·)$, $\chi_{1376}(1117,·)$, $\chi_{1376}(689,·)$, $\chi_{1376}(1205,·)$, $\chi_{1376}(1289,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{111480229810044983441} a^{14} - \frac{7}{111480229810044983441} a^{13} + \frac{46746984994961028571}{111480229810044983441} a^{12} + \frac{53958779460368778988}{111480229810044983441} a^{11} - \frac{267506639978536504}{111480229810044983441} a^{10} + \frac{8376422291714633781}{111480229810044983441} a^{9} - \frac{42050536357028640352}{111480229810044983441} a^{8} + \frac{42608806881613427230}{111480229810044983441} a^{7} + \frac{50329191989710438221}{111480229810044983441} a^{6} + \frac{44505860967730948616}{111480229810044983441} a^{5} + \frac{18243665976193567143}{111480229810044983441} a^{4} - \frac{3893509374880666736}{111480229810044983441} a^{3} + \frac{6253175469858645509}{111480229810044983441} a^{2} - \frac{1850876040173657579}{111480229810044983441} a + \frac{47933892199668067882}{111480229810044983441}$, $\frac{1}{735685795093709546928035809} a^{15} + \frac{3299617}{735685795093709546928035809} a^{14} - \frac{228542339459923734309943108}{735685795093709546928035809} a^{13} - \frac{199441784254263808037520532}{735685795093709546928035809} a^{12} + \frac{1339492625165610028171256}{735685795093709546928035809} a^{11} + \frac{263536402291596969044999657}{735685795093709546928035809} a^{10} + \frac{293499283632931727156123612}{735685795093709546928035809} a^{9} + \frac{225855654367636873792833536}{735685795093709546928035809} a^{8} + \frac{232198626566638976713938261}{735685795093709546928035809} a^{7} - \frac{132574257816896782325014796}{735685795093709546928035809} a^{6} + \frac{257824059274646177926262803}{735685795093709546928035809} a^{5} - \frac{2460705797879876543314179}{23731799841732566029936639} a^{4} + \frac{19555398431492469512548982}{735685795093709546928035809} a^{3} - \frac{325865822481857642801564728}{735685795093709546928035809} a^{2} + \frac{100263609367871426667566233}{735685795093709546928035809} a + \frac{10010436168511528285504761}{23731799841732566029936639}$
Class group and class number
$C_{5}\times C_{23225}$, which has order $116125$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-86}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{2}, \sqrt{-43})\), \(\Q(\zeta_{16})^+\), 4.0.3786752.2, 8.0.14339490709504.11, \(\Q(\zeta_{32})^+\), 8.0.7341819243266048.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 43 | Data not computed | ||||||