Normalized defining polynomial
\( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 1054 x^{12} - 3776 x^{11} + 15772 x^{10} - 48632 x^{9} + 177651 x^{8} - 452912 x^{7} + 1377556 x^{6} - 2717984 x^{5} + 6750322 x^{4} - 9418640 x^{3} + 18896152 x^{2} - 14576384 x + 23710844 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(538148993119091792281600000000=2^{44}\cdot 5^{8}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1840=2^{4}\cdot 5\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1840}(1,·)$, $\chi_{1840}(321,·)$, $\chi_{1840}(1289,·)$, $\chi_{1840}(781,·)$, $\chi_{1840}(461,·)$, $\chi_{1840}(1749,·)$, $\chi_{1840}(1241,·)$, $\chi_{1840}(921,·)$, $\chi_{1840}(1701,·)$, $\chi_{1840}(229,·)$, $\chi_{1840}(1381,·)$, $\chi_{1840}(689,·)$, $\chi_{1840}(829,·)$, $\chi_{1840}(369,·)$, $\chi_{1840}(1609,·)$, $\chi_{1840}(1149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{62} a^{12} - \frac{3}{31} a^{11} - \frac{7}{62} a^{10} - \frac{3}{62} a^{9} + \frac{1}{31} a^{8} + \frac{3}{31} a^{7} - \frac{5}{62} a^{6} - \frac{27}{62} a^{5} - \frac{15}{62} a^{4} + \frac{12}{31} a^{3} + \frac{12}{31} a^{2} + \frac{3}{31} a + \frac{11}{31}$, $\frac{1}{62} a^{13} - \frac{6}{31} a^{11} - \frac{7}{31} a^{10} + \frac{15}{62} a^{9} - \frac{13}{62} a^{8} - \frac{13}{31} a^{6} - \frac{11}{31} a^{5} + \frac{27}{62} a^{4} - \frac{9}{31} a^{3} + \frac{13}{31} a^{2} - \frac{2}{31} a + \frac{4}{31}$, $\frac{1}{18089088480312094} a^{14} - \frac{1}{2584155497187442} a^{13} - \frac{10445320051753}{9044544240156047} a^{12} + \frac{125343840621127}{18089088480312094} a^{11} + \frac{1626549720373265}{9044544240156047} a^{10} + \frac{674606070885613}{18089088480312094} a^{9} + \frac{309173366894705}{9044544240156047} a^{8} - \frac{5142241113638635}{18089088480312094} a^{7} + \frac{1113396484475901}{18089088480312094} a^{6} - \frac{2797344240590058}{9044544240156047} a^{5} + \frac{3723661526901627}{9044544240156047} a^{4} + \frac{2929910428536248}{9044544240156047} a^{3} - \frac{3661592172752242}{9044544240156047} a^{2} - \frac{505465950483792}{9044544240156047} a + \frac{3340251286560417}{9044544240156047}$, $\frac{1}{20877141598694116736126} a^{15} + \frac{577057}{20877141598694116736126} a^{14} + \frac{13660460711721356800}{10438570799347058368063} a^{13} + \frac{147086854263104479015}{20877141598694116736126} a^{12} - \frac{692576985550670498541}{2982448799813445248018} a^{11} + \frac{1765751360559231848983}{20877141598694116736126} a^{10} + \frac{4919754180322483015043}{20877141598694116736126} a^{9} + \frac{3298770912366990598491}{20877141598694116736126} a^{8} - \frac{2467506705689770938350}{10438570799347058368063} a^{7} - \frac{2069918254351275745201}{10438570799347058368063} a^{6} + \frac{911390217210847625095}{20877141598694116736126} a^{5} + \frac{3401901253528920052313}{10438570799347058368063} a^{4} - \frac{669713739831610171892}{1491224399906722624009} a^{3} + \frac{3937170690284188059344}{10438570799347058368063} a^{2} - \frac{705781485844404639426}{10438570799347058368063} a - \frac{5066464913853061116156}{10438570799347058368063}$
Class group and class number
$C_{2}\times C_{40}\times C_{240}$, which has order $19200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |