Normalized defining polynomial
\( x^{16} - 3 x^{15} + 60 x^{14} - 197 x^{13} + 1713 x^{12} - 4867 x^{11} + 24121 x^{10} - 51334 x^{9} + 156212 x^{8} - 228630 x^{7} + 409997 x^{6} - 399031 x^{5} + 583274 x^{4} - 446279 x^{3} + 613192 x^{2} - 266447 x + 270301 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(536385794583341500395870753=3^{8}\cdot 13^{4}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{101} a^{14} - \frac{11}{101} a^{13} + \frac{48}{101} a^{12} + \frac{14}{101} a^{11} + \frac{33}{101} a^{10} + \frac{34}{101} a^{9} + \frac{46}{101} a^{8} + \frac{44}{101} a^{7} - \frac{38}{101} a^{6} - \frac{22}{101} a^{5} - \frac{26}{101} a^{4} + \frac{4}{101} a^{3} + \frac{42}{101} a^{2} + \frac{11}{101} a - \frac{25}{101}$, $\frac{1}{125423509315090144432218887554136600883266923} a^{15} + \frac{369303363002659236468895888726974915247567}{125423509315090144432218887554136600883266923} a^{14} + \frac{118849484120913970177541010132592701152286}{1241816923911783608239790965882540602804623} a^{13} + \frac{48301145581325964982816904759467839742601627}{125423509315090144432218887554136600883266923} a^{12} - \frac{24304259067579845640561771110895728998731213}{125423509315090144432218887554136600883266923} a^{11} - \frac{27936333557482929429892157955651082671572479}{125423509315090144432218887554136600883266923} a^{10} - \frac{20464447875436917029704319310205755893302027}{125423509315090144432218887554136600883266923} a^{9} - \frac{12331753022254935534302690372851211005803000}{125423509315090144432218887554136600883266923} a^{8} - \frac{50545595380026860722427286618693894678228538}{125423509315090144432218887554136600883266923} a^{7} - \frac{38642096880500439627365242578674474714783454}{125423509315090144432218887554136600883266923} a^{6} + \frac{7940917575673730540012669587150245448820399}{125423509315090144432218887554136600883266923} a^{5} - \frac{34523920849234651753203490337380680655636415}{125423509315090144432218887554136600883266923} a^{4} + \frac{32844902764217800385407504641431254774605911}{125423509315090144432218887554136600883266923} a^{3} - \frac{18716429092636652904371504942661933341076589}{125423509315090144432218887554136600883266923} a^{2} - \frac{39154170219326128950371977958594362362754388}{125423509315090144432218887554136600883266923} a - \frac{30660929900361146906543845704635874954021600}{125423509315090144432218887554136600883266923}$
Class group and class number
$C_{2}\times C_{22}\times C_{22}$, which has order $968$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17 | Data not computed | ||||||