Properties

Label 16.0.53586372784...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 5^{8}\cdot 19^{4}\cdot 89^{4}$
Root discriminant $40.56$
Ramified primes $2, 5, 19, 89$
Class number $32$ (GRH)
Class group $[2, 2, 8]$ (GRH)
Galois group $C_2\times D_4^2.C_2$ (as 16T602)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10000, 0, 38000, 0, 56300, 0, 42480, 0, 17821, 0, 4248, 0, 563, 0, 38, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 38*x^14 + 563*x^12 + 4248*x^10 + 17821*x^8 + 42480*x^6 + 56300*x^4 + 38000*x^2 + 10000)
 
gp: K = bnfinit(x^16 + 38*x^14 + 563*x^12 + 4248*x^10 + 17821*x^8 + 42480*x^6 + 56300*x^4 + 38000*x^2 + 10000, 1)
 

Normalized defining polynomial

\( x^{16} + 38 x^{14} + 563 x^{12} + 4248 x^{10} + 17821 x^{8} + 42480 x^{6} + 56300 x^{4} + 38000 x^{2} + 10000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(53586372784036249600000000=2^{24}\cdot 5^{8}\cdot 19^{4}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.56$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{30} a^{10} + \frac{4}{15} a^{8} - \frac{7}{30} a^{6} + \frac{4}{15} a^{4} + \frac{11}{30} a^{2} + \frac{1}{3}$, $\frac{1}{30} a^{11} + \frac{4}{15} a^{9} - \frac{7}{30} a^{7} + \frac{4}{15} a^{5} + \frac{11}{30} a^{3} + \frac{1}{3} a$, $\frac{1}{1800} a^{12} - \frac{1}{60} a^{11} - \frac{1}{150} a^{10} + \frac{11}{30} a^{9} - \frac{137}{1800} a^{8} - \frac{23}{60} a^{7} - \frac{151}{900} a^{6} - \frac{2}{15} a^{5} + \frac{421}{1800} a^{4} + \frac{19}{60} a^{3} + \frac{1}{60} a^{2} + \frac{1}{3} a + \frac{7}{18}$, $\frac{1}{18000} a^{13} - \frac{7}{500} a^{11} - \frac{1}{60} a^{10} + \frac{1543}{18000} a^{9} - \frac{2}{15} a^{8} - \frac{2011}{9000} a^{7} - \frac{23}{60} a^{6} + \frac{3901}{18000} a^{5} + \frac{11}{30} a^{4} - \frac{29}{200} a^{3} + \frac{19}{60} a^{2} - \frac{89}{180} a - \frac{1}{6}$, $\frac{1}{54000} a^{14} - \frac{1}{27000} a^{12} - \frac{257}{54000} a^{10} - \frac{1}{2} a^{9} + \frac{1583}{3375} a^{8} - \frac{7999}{54000} a^{6} - \frac{1}{2} a^{5} - \frac{172}{675} a^{4} + \frac{59}{270} a^{2} - \frac{1}{2} a + \frac{25}{54}$, $\frac{1}{540000} a^{15} - \frac{1}{270000} a^{13} + \frac{1543}{540000} a^{11} - \frac{1}{60} a^{10} - \frac{446}{16875} a^{9} + \frac{11}{30} a^{8} - \frac{182599}{540000} a^{7} - \frac{23}{60} a^{6} + \frac{1354}{3375} a^{5} - \frac{2}{15} a^{4} - \frac{298}{675} a^{3} + \frac{19}{60} a^{2} - \frac{13}{108} a + \frac{1}{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{8}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 59222.6422927 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_4^2.C_2$ (as 16T602):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 40 conjugacy class representatives for $C_2\times D_4^2.C_2$
Character table for $C_2\times D_4^2.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.7600.1, 4.4.2225.1, 4.4.676400.2, 8.0.96319360000.1, 8.0.6019960000.1, 8.8.457516960000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.2$x^{8} + 2 x^{7} + 8 x^{2} + 48$$2$$4$$8$$C_2^2:C_4$$[2, 2]^{4}$
2.8.16.12$x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 12$$4$$2$$16$$C_2^2:C_4$$[2, 2, 3]^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$89$89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$