/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 5*x^15 + 48*x^13 - 71*x^12 - 144*x^11 + 407*x^10 + 127*x^9 - 1131*x^8 + 362*x^7 + 2021*x^6 - 1806*x^5 - 1511*x^4 + 2595*x^3 - 222*x^2 - 1177*x + 517, 16, 60, [0, 8], 53194395371827682204001, [3, 7, 11], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, 1/33*a^12 + 1/33*a^11 - 2/33*a^10 - 8/33*a^9 + 1/33*a^8 + 2/11*a^7 + 14/33*a^6 - 1/11*a^5 + 16/33*a^4 - 7/33*a^3 - 8/33*a^2 + 1/3*a - 1/3, 1/33*a^13 - 1/11*a^11 - 2/11*a^10 + 3/11*a^9 + 5/33*a^8 + 8/33*a^7 + 16/33*a^6 - 14/33*a^5 + 10/33*a^4 - 1/33*a^3 - 14/33*a^2 + 1/3*a + 1/3, 1/1089*a^14 - 2/1089*a^13 + 1/99*a^12 + 47/1089*a^11 + 257/1089*a^10 + 337/1089*a^9 + 38/121*a^8 + 116/363*a^7 + 94/363*a^6 - 499/1089*a^5 - 127/1089*a^4 + 20/99*a^3 + 257/1089*a^2 - 47/99*a + 38/99, 1/70419343203*a^15 + 4234085/23473114401*a^14 + 399597250/70419343203*a^13 + 85545915/7824371467*a^12 - 8912278781/23473114401*a^11 + 13318120565/70419343203*a^10 + 26503237382/70419343203*a^9 + 4841323301/23473114401*a^8 + 4970716601/23473114401*a^7 + 6757943996/70419343203*a^6 + 4846987009/23473114401*a^5 + 13189007867/70419343203*a^4 - 3188104883/70419343203*a^3 - 87767848/7824371467*a^2 + 1284775762/6401758473*a + 2053123855/6401758473], 0, 2, [2], 0, [ (633504541)/(23473114401)*a^(15) - (8816092900)/(70419343203)*a^(14) - (1998516004)/(70419343203)*a^(13) + (83963629972)/(70419343203)*a^(12) - (100064645774)/(70419343203)*a^(11) - (260962284866)/(70419343203)*a^(10) + (573102943067)/(70419343203)*a^(9) + (123154438633)/(23473114401)*a^(8) - (173762621301)/(7824371467)*a^(7) + (24344579)/(7824371467)*a^(6) + (2832679871455)/(70419343203)*a^(5) - (1580074918403)/(70419343203)*a^(4) - (2040043330942)/(70419343203)*a^(3) + (2030415328900)/(70419343203)*a^(2) + (2181031708)/(581978043)*a - (52522622474)/(6401758473) , (10305756136)/(70419343203)*a^(15) - (40494252761)/(70419343203)*a^(14) - (43883087014)/(70419343203)*a^(13) + (447835710161)/(70419343203)*a^(12) - (242740508044)/(70419343203)*a^(11) - (1760636564933)/(70419343203)*a^(10) + (68327071915)/(2133919491)*a^(9) + (1280863154507)/(23473114401)*a^(8) - (825938451947)/(7824371467)*a^(7) - (4659523266775)/(70419343203)*a^(6) + (15728502254606)/(70419343203)*a^(5) - (835484126402)/(70419343203)*a^(4) - (16685692299322)/(70419343203)*a^(3) + (7612325936990)/(70419343203)*a^(2) + (601578646517)/(6401758473)*a - (134762973331)/(2133919491) , (1309439309)/(70419343203)*a^(15) - (7213182871)/(70419343203)*a^(14) - (158512252)/(6401758473)*a^(13) + (80904115441)/(70419343203)*a^(12) - (98101370513)/(70419343203)*a^(11) - (344217999562)/(70419343203)*a^(10) + (224594768362)/(23473114401)*a^(9) + (234450471542)/(23473114401)*a^(8) - (758263068188)/(23473114401)*a^(7) - (679930672253)/(70419343203)*a^(6) + (4797892805617)/(70419343203)*a^(5) - (80300165384)/(6401758473)*a^(4) - (5944906274783)/(70419343203)*a^(3) + (276800174978)/(6401758473)*a^(2) + (267243499852)/(6401758473)*a - (1954532167)/(64664227) , (642764752)/(70419343203)*a^(15) - (370057135)/(7824371467)*a^(14) - (10980700)/(6401758473)*a^(13) + (10918519318)/(23473114401)*a^(12) - (15163720381)/(23473114401)*a^(11) - (110192378440)/(70419343203)*a^(10) + (266141859965)/(70419343203)*a^(9) + (50545019587)/(23473114401)*a^(8) - (262327528291)/(23473114401)*a^(7) + (41239955294)/(70419343203)*a^(6) + (165815073642)/(7824371467)*a^(5) - (75896034101)/(6401758473)*a^(4) - (1435921577375)/(70419343203)*a^(3) + (39823330376)/(2133919491)*a^(2) + (37721861632)/(6401758473)*a - (5338405528)/(581978043) , (3960179195)/(70419343203)*a^(15) - (5759988221)/(23473114401)*a^(14) - (12388787740)/(70419343203)*a^(13) + (61751519098)/(23473114401)*a^(12) - (16573627412)/(7824371467)*a^(11) - (64658204767)/(6401758473)*a^(10) + (1096541814925)/(70419343203)*a^(9) + (160369469009)/(7824371467)*a^(8) - (1156489054375)/(23473114401)*a^(7) - (1563504328085)/(70419343203)*a^(6) + (2339582124724)/(23473114401)*a^(5) - (1108213324787)/(70419343203)*a^(4) - (7201029967870)/(70419343203)*a^(3) + (412435215358)/(7824371467)*a^(2) + (240234000302)/(6401758473)*a - (179474952742)/(6401758473) , (419261531)/(7824371467)*a^(15) - (2000606750)/(7824371467)*a^(14) + (121455524)/(7824371467)*a^(13) + (52094252680)/(23473114401)*a^(12) - (77254449647)/(23473114401)*a^(11) - (124462875452)/(23473114401)*a^(10) + (377466664471)/(23473114401)*a^(9) + (52780382902)/(23473114401)*a^(8) - (26653404609)/(711306497)*a^(7) + (36251198245)/(2133919491)*a^(6) + (448546801755)/(7824371467)*a^(5) - (1572273123218)/(23473114401)*a^(4) - (211813882570)/(23473114401)*a^(3) + (1244699308087)/(23473114401)*a^(2) - (58054209155)/(2133919491)*a + (4947952520)/(2133919491) , (747789156)/(7824371467)*a^(15) - (28252903315)/(70419343203)*a^(14) - (19283540356)/(70419343203)*a^(13) + (293080188652)/(70419343203)*a^(12) - (22622229721)/(6401758473)*a^(11) - (1033052594459)/(70419343203)*a^(10) + (1775623394861)/(70419343203)*a^(9) + (626253869441)/(23473114401)*a^(8) - (1780554141482)/(23473114401)*a^(7) - (142171921718)/(7824371467)*a^(6) + (10643553095866)/(70419343203)*a^(5) - (3739130572472)/(70419343203)*a^(4) - (9894833601223)/(70419343203)*a^(3) + (7480110683425)/(70419343203)*a^(2) + (293988381494)/(6401758473)*a - (321558055619)/(6401758473) ], 49121.45359495154, [[x^2 - x + 3, 1], [x^4 - x^3 - 3*x^2 - 30*x + 75, 1], [x^8 - x^7 + 12*x^6 - 16*x^5 + 4*x^4 + 72*x^3 - 35*x^2 - 22*x + 132, 1]]]