Normalized defining polynomial
\( x^{16} - 4 x^{15} + 74 x^{14} - 352 x^{13} + 2602 x^{12} - 9704 x^{11} + 42818 x^{10} - 121952 x^{9} + 390370 x^{8} - 940332 x^{7} + 2450022 x^{6} - 5077560 x^{5} + 9984474 x^{4} - 14175360 x^{3} + 16341750 x^{2} - 8146152 x + 1385757 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53178385204239177923287842816=2^{32}\cdot 3^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{26} a^{8} - \frac{1}{13} a^{7} - \frac{2}{13} a^{6} - \frac{1}{13} a^{5} + \frac{1}{13} a^{4} + \frac{3}{13} a^{3} - \frac{5}{13} a^{2} + \frac{1}{13} a + \frac{3}{26}$, $\frac{1}{26} a^{9} - \frac{4}{13} a^{7} - \frac{5}{13} a^{6} - \frac{1}{13} a^{5} + \frac{5}{13} a^{4} + \frac{1}{13} a^{3} + \frac{4}{13} a^{2} + \frac{7}{26} a + \frac{3}{13}$, $\frac{1}{26} a^{10} - \frac{4}{13} a^{6} - \frac{3}{13} a^{5} - \frac{4}{13} a^{4} + \frac{2}{13} a^{3} + \frac{5}{26} a^{2} - \frac{2}{13} a - \frac{1}{13}$, $\frac{1}{26} a^{11} - \frac{4}{13} a^{7} - \frac{3}{13} a^{6} - \frac{4}{13} a^{5} + \frac{2}{13} a^{4} + \frac{5}{26} a^{3} - \frac{2}{13} a^{2} - \frac{1}{13} a$, $\frac{1}{78} a^{12} - \frac{1}{78} a^{11} - \frac{1}{78} a^{10} - \frac{1}{78} a^{9} + \frac{1}{78} a^{8} - \frac{4}{39} a^{7} + \frac{16}{39} a^{6} + \frac{14}{39} a^{5} - \frac{35}{78} a^{4} - \frac{1}{2} a^{3} + \frac{1}{26} a^{2} - \frac{3}{26} a - \frac{1}{26}$, $\frac{1}{78} a^{13} + \frac{1}{78} a^{11} + \frac{1}{78} a^{10} - \frac{1}{78} a^{8} - \frac{2}{13} a^{7} - \frac{1}{13} a^{6} + \frac{17}{78} a^{5} + \frac{2}{39} a^{4} + \frac{9}{26} a^{3} + \frac{5}{26} a^{2} - \frac{3}{13} a + \frac{3}{26}$, $\frac{1}{10218} a^{14} + \frac{29}{10218} a^{13} - \frac{19}{3406} a^{12} + \frac{1}{786} a^{11} - \frac{10}{1703} a^{10} - \frac{7}{3406} a^{9} - \frac{5}{3406} a^{8} - \frac{1133}{5109} a^{7} + \frac{903}{3406} a^{6} + \frac{3697}{10218} a^{5} - \frac{4115}{10218} a^{4} + \frac{373}{3406} a^{3} - \frac{770}{1703} a^{2} - \frac{59}{3406} a + \frac{1497}{3406}$, $\frac{1}{409196745792066865917413327824291458} a^{15} - \frac{9629692159992074727688374683966}{204598372896033432958706663912145729} a^{14} - \frac{7583631751981058325548946183667}{3824268652262307158106666615180294} a^{13} + \frac{2425185130528596931183102686759101}{409196745792066865917413327824291458} a^{12} - \frac{818371724957920997254270573198367}{68199457632011144319568887970715243} a^{11} + \frac{4050831622031377481336096280915}{807094173159895199048152520363494} a^{10} - \frac{3128539406407795599847453850071205}{204598372896033432958706663912145729} a^{9} - \frac{3339998959690157204762102693516750}{204598372896033432958706663912145729} a^{8} - \frac{138688244912311905969194217987803567}{409196745792066865917413327824291458} a^{7} + \frac{33990256788769798218290790440592690}{68199457632011144319568887970715243} a^{6} + \frac{72520012223683642166127191580059377}{409196745792066865917413327824291458} a^{5} + \frac{34078963250166489287797195025478485}{409196745792066865917413327824291458} a^{4} - \frac{22891723168707513709618350091480017}{68199457632011144319568887970715243} a^{3} + \frac{49253398858850673638235865437871569}{136398915264022288639137775941430486} a^{2} + \frac{17899622531087597188491462179093818}{68199457632011144319568887970715243} a + \frac{38035031808914063497250321055225}{637378108710384526351111102530049}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{8}$, which has order $2048$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29886.0391883 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{39}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{3}, \sqrt{13})\), 4.4.8112.1 x2, 4.4.7488.1 x2, 8.8.9475854336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |