Properties

Label 16.0.53134398644...6976.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 7^{8}\cdot 11^{8}$
Root discriminant $30.40$
Ramified primes $2, 3, 7, 11$
Class number $24$ (GRH)
Class group $[2, 12]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![71824, 0, -41752, 0, -799, 0, 5004, 0, -868, 0, -222, 0, 92, 0, 20, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 20*x^14 + 92*x^12 - 222*x^10 - 868*x^8 + 5004*x^6 - 799*x^4 - 41752*x^2 + 71824)
 
gp: K = bnfinit(x^16 + 20*x^14 + 92*x^12 - 222*x^10 - 868*x^8 + 5004*x^6 - 799*x^4 - 41752*x^2 + 71824, 1)
 

Normalized defining polynomial

\( x^{16} + 20 x^{14} + 92 x^{12} - 222 x^{10} - 868 x^{8} + 5004 x^{6} - 799 x^{4} - 41752 x^{2} + 71824 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(531343986448422341246976=2^{16}\cdot 3^{8}\cdot 7^{8}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(924=2^{2}\cdot 3\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{924}(1,·)$, $\chi_{924}(197,·)$, $\chi_{924}(769,·)$, $\chi_{924}(265,·)$, $\chi_{924}(923,·)$, $\chi_{924}(461,·)$, $\chi_{924}(463,·)$, $\chi_{924}(659,·)$, $\chi_{924}(727,·)$, $\chi_{924}(155,·)$, $\chi_{924}(419,·)$, $\chi_{924}(617,·)$, $\chi_{924}(43,·)$, $\chi_{924}(881,·)$, $\chi_{924}(307,·)$, $\chi_{924}(505,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{20} a^{10} - \frac{1}{10} a^{8} - \frac{2}{5} a^{6} + \frac{9}{20} a^{4} + \frac{1}{10} a^{2} + \frac{2}{5}$, $\frac{1}{20} a^{11} - \frac{1}{10} a^{9} + \frac{1}{10} a^{7} + \frac{9}{20} a^{5} + \frac{1}{10} a^{3} - \frac{1}{10} a$, $\frac{1}{2640} a^{12} - \frac{17}{2640} a^{10} + \frac{19}{880} a^{8} + \frac{509}{2640} a^{6} - \frac{131}{880} a^{4} - \frac{47}{2640} a^{2} + \frac{53}{132}$, $\frac{1}{2640} a^{13} - \frac{17}{2640} a^{11} + \frac{19}{880} a^{9} + \frac{509}{2640} a^{7} - \frac{131}{880} a^{5} - \frac{47}{2640} a^{3} + \frac{53}{132} a$, $\frac{1}{35273615520} a^{14} - \frac{1205381}{17636807760} a^{12} + \frac{14535601}{1603346160} a^{10} + \frac{15326003}{400836540} a^{8} + \frac{2855969041}{17636807760} a^{6} + \frac{7808571539}{17636807760} a^{4} - \frac{2086444949}{7054723104} a^{2} - \frac{304843261}{1763680776}$, $\frac{1}{4726664479680} a^{15} + \frac{1006177}{73854132495} a^{13} - \frac{7416663259}{393888706640} a^{11} + \frac{117217568137}{2363332239840} a^{9} - \frac{84874352309}{393888706640} a^{7} + \frac{283938713527}{1181666119920} a^{5} - \frac{196719307555}{945332895936} a^{3} + \frac{26945944551}{78777741328} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{60487}{1275752896} a^{15} - \frac{927271}{956814672} a^{13} - \frac{1512131}{299004585} a^{11} + \frac{12623003}{3189382240} a^{9} + \frac{22216981}{598009170} a^{7} - \frac{11144223}{99668195} a^{5} - \frac{2403695573}{19136293440} a^{3} + \frac{4699153867}{4784073360} a \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 183925.11064 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-33}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{231}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-77}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{21}) \), \(\Q(i, \sqrt{33})\), \(\Q(i, \sqrt{11})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{-3}, \sqrt{11})\), \(\Q(\sqrt{3}, \sqrt{-11})\), \(\Q(\sqrt{3}, \sqrt{11})\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{231})\), \(\Q(i, \sqrt{77})\), \(\Q(i, \sqrt{21})\), \(\Q(\sqrt{7}, \sqrt{-33})\), \(\Q(\sqrt{-7}, \sqrt{-33})\), \(\Q(\sqrt{-21}, \sqrt{-33})\), \(\Q(\sqrt{21}, \sqrt{-33})\), \(\Q(\sqrt{7}, \sqrt{33})\), \(\Q(\sqrt{-7}, \sqrt{33})\), \(\Q(\sqrt{21}, \sqrt{33})\), \(\Q(\sqrt{-21}, \sqrt{33})\), \(\Q(\sqrt{7}, \sqrt{11})\), \(\Q(\sqrt{-7}, \sqrt{11})\), \(\Q(\sqrt{11}, \sqrt{-21})\), \(\Q(\sqrt{11}, \sqrt{21})\), \(\Q(\sqrt{7}, \sqrt{-11})\), \(\Q(\sqrt{-7}, \sqrt{-11})\), \(\Q(\sqrt{-11}, \sqrt{21})\), \(\Q(\sqrt{-11}, \sqrt{-21})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{77})\), \(\Q(\sqrt{-3}, \sqrt{-77})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{3}, \sqrt{-77})\), \(\Q(\sqrt{3}, \sqrt{77})\), 8.0.303595776.1, 8.0.728933458176.8, 8.0.728933458176.3, 8.0.8999178496.1, 8.0.728933458176.2, 8.0.49787136.1, 8.0.728933458176.10, 8.0.728933458176.1, 8.0.728933458176.9, 8.0.728933458176.5, 8.0.728933458176.7, 8.8.728933458176.1, 8.0.728933458176.4, 8.0.728933458176.6, 8.0.2847396321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ R R ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$