Normalized defining polynomial
\( x^{16} - 6 x^{15} + 20 x^{14} - 54 x^{13} + 126 x^{12} - 228 x^{11} + 322 x^{10} - 426 x^{9} + 591 x^{8} - 720 x^{7} + 698 x^{6} - 642 x^{5} + 634 x^{4} - 510 x^{3} + 258 x^{2} - 72 x + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(531312517142544384=2^{24}\cdot 3^{8}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{10} - \frac{1}{6} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{21838914} a^{15} - \frac{206009}{7279638} a^{14} - \frac{72245}{949518} a^{13} + \frac{450299}{7279638} a^{12} + \frac{128069}{3639819} a^{11} - \frac{254059}{3639819} a^{10} - \frac{2144188}{10919457} a^{9} + \frac{552999}{2426546} a^{8} + \frac{388139}{3639819} a^{7} - \frac{634936}{3639819} a^{6} - \frac{4394396}{10919457} a^{5} + \frac{3574525}{7279638} a^{4} + \frac{9729673}{21838914} a^{3} - \frac{930805}{2426546} a^{2} - \frac{2963675}{7279638} a + \frac{311511}{1213273}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{17360959}{10919457} a^{15} + \frac{20457609}{2426546} a^{14} - \frac{24641123}{949518} a^{13} + \frac{164723255}{2426546} a^{12} - \frac{1115942683}{7279638} a^{11} + \frac{933187892}{3639819} a^{10} - \frac{3655498930}{10919457} a^{9} + \frac{3244813889}{7279638} a^{8} - \frac{1530480337}{2426546} a^{7} + \frac{2578306688}{3639819} a^{6} - \frac{6769219775}{10919457} a^{5} + \frac{4295053055}{7279638} a^{4} - \frac{13055213141}{21838914} a^{3} + \frac{2892637961}{7279638} a^{2} - \frac{973814915}{7279638} a + \frac{23292528}{1213273} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1024.23596776 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\wr C_2$ (as 16T46):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2\wr C_2$ |
| Character table for $C_2^2\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), 4.4.7488.1, 4.0.7488.1, 4.0.832.1, 4.0.7488.4, 4.0.117.1, \(\Q(\zeta_{12})\), 4.0.1872.1, 8.0.3504384.2, 8.0.56070144.2, 8.0.56070144.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |