Normalized defining polynomial
\( x^{16} + 9 x^{14} + 7 x^{12} - 238 x^{10} - 1113 x^{8} + 462 x^{6} + 12222 x^{4} + 24684 x^{2} + 14641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53112317075112629735569=7^{14}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{290} a^{10} + \frac{11}{58} a^{8} - \frac{57}{145} a^{6} - \frac{1}{2} a^{5} - \frac{111}{290} a^{4} - \frac{1}{58} a^{2} - \frac{1}{2} a - \frac{91}{290}$, $\frac{1}{3190} a^{11} - \frac{105}{638} a^{9} + \frac{8}{145} a^{7} - \frac{1}{2} a^{6} + \frac{1049}{3190} a^{5} + \frac{173}{638} a^{3} - \frac{1}{2} a^{2} + \frac{1069}{3190} a$, $\frac{1}{3190} a^{12} + \frac{3}{3190} a^{10} + \frac{23}{145} a^{8} - \frac{1}{2} a^{7} + \frac{1467}{3190} a^{6} - \frac{323}{3190} a^{4} - \frac{1}{2} a^{3} - \frac{1571}{3190} a^{2} - \frac{9}{145}$, $\frac{1}{3190} a^{13} + \frac{243}{1595} a^{9} - \frac{328}{1595} a^{7} - \frac{1}{2} a^{6} + \frac{263}{638} a^{5} - \frac{1}{2} a^{4} - \frac{488}{1595} a^{3} - \frac{1}{2} a^{2} + \frac{138}{319} a$, $\frac{1}{6772370} a^{14} + \frac{1043}{6772370} a^{12} - \frac{8507}{6772370} a^{10} - \frac{167099}{3386185} a^{8} + \frac{1584252}{3386185} a^{6} - \frac{1}{2} a^{5} + \frac{289967}{615670} a^{4} + \frac{1288057}{6772370} a^{2} + \frac{4364}{27985}$, $\frac{1}{74496070} a^{15} - \frac{108}{7449607} a^{13} + \frac{8477}{74496070} a^{11} + \frac{8403452}{37248035} a^{9} + \frac{7161373}{37248035} a^{7} + \frac{1443584}{3386185} a^{5} - \frac{1}{2} a^{4} - \frac{3162117}{14899214} a^{3} - \frac{1}{2} a^{2} - \frac{72643}{307835} a$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24713.1006295 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{161}) \), \(\Q(\sqrt{-7}, \sqrt{-23})\), 4.0.7889.1 x2, 4.2.181447.1 x2, 8.0.32923013809.1, 8.0.10020047681.1 x4, 8.2.230461096663.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |