Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 16 x^{13} + 8 x^{12} + 16 x^{11} + 20 x^{9} - 14 x^{8} - 20 x^{7} - 16 x^{5} + 8 x^{4} + 16 x^{3} + 8 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5308416000000000000=2^{28}\cdot 3^{4}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{60} a^{12} + \frac{1}{20} a^{11} - \frac{1}{12} a^{9} - \frac{1}{15} a^{8} + \frac{1}{6} a^{7} - \frac{1}{15} a^{6} - \frac{1}{6} a^{5} - \frac{19}{60} a^{4} + \frac{1}{12} a^{3} - \frac{1}{20} a + \frac{4}{15}$, $\frac{1}{60} a^{13} + \frac{1}{10} a^{11} - \frac{1}{12} a^{10} - \frac{1}{15} a^{9} + \frac{7}{60} a^{8} - \frac{1}{15} a^{7} + \frac{1}{30} a^{6} - \frac{19}{60} a^{5} + \frac{1}{30} a^{4} - \frac{1}{2} a^{3} - \frac{1}{20} a^{2} - \frac{1}{3} a - \frac{1}{20}$, $\frac{1}{120} a^{14} - \frac{1}{120} a^{12} + \frac{1}{30} a^{11} + \frac{11}{120} a^{10} + \frac{1}{10} a^{9} + \frac{3}{40} a^{8} + \frac{13}{30} a^{7} + \frac{3}{40} a^{6} - \frac{2}{5} a^{5} - \frac{17}{120} a^{4} - \frac{1}{15} a^{3} - \frac{1}{24} a^{2} - \frac{1}{10} a - \frac{7}{120}$, $\frac{1}{600} a^{15} - \frac{1}{600} a^{14} - \frac{1}{120} a^{13} - \frac{1}{600} a^{12} + \frac{1}{24} a^{11} - \frac{13}{200} a^{10} + \frac{73}{600} a^{9} - \frac{17}{200} a^{8} + \frac{71}{200} a^{7} - \frac{221}{600} a^{6} - \frac{133}{600} a^{5} + \frac{59}{120} a^{4} - \frac{89}{200} a^{3} + \frac{49}{120} a^{2} - \frac{47}{600} a + \frac{253}{600}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{211}{100} a^{15} - \frac{463}{50} a^{14} + \frac{411}{20} a^{13} - \frac{2103}{50} a^{12} + \frac{679}{20} a^{11} + \frac{953}{50} a^{10} - \frac{617}{100} a^{9} + \frac{2257}{50} a^{8} - \frac{4777}{100} a^{7} - \frac{1053}{50} a^{6} + \frac{667}{100} a^{5} - \frac{369}{10} a^{4} + \frac{3183}{100} a^{3} + \frac{199}{10} a^{2} + \frac{1043}{100} a + \frac{249}{50} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1070.46014902 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), 4.0.8000.1 x2, \(\Q(i, \sqrt{5})\), 4.2.2000.1 x2, 8.0.2304000000.2 x2, 8.0.115200000.1 x2, 8.0.64000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |