Normalized defining polynomial
\( x^{16} - 2 x^{15} - 8 x^{14} + 5 x^{13} + 10 x^{12} + 73 x^{11} + 162 x^{10} - 366 x^{9} - 563 x^{8} + 349 x^{7} - 469 x^{6} + 35 x^{5} + 3051 x^{4} - 488 x^{3} - 2022 x^{2} + 5080 x + 4751 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(530732138800906430621=29^{5}\cdot 97^{2}\cdot 229^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 97, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{227} a^{14} + \frac{43}{227} a^{13} + \frac{2}{227} a^{12} - \frac{52}{227} a^{11} - \frac{51}{227} a^{10} + \frac{41}{227} a^{9} + \frac{75}{227} a^{8} - \frac{98}{227} a^{7} + \frac{18}{227} a^{6} + \frac{37}{227} a^{5} - \frac{85}{227} a^{4} - \frac{105}{227} a^{3} + \frac{100}{227} a^{2} + \frac{21}{227} a + \frac{54}{227}$, $\frac{1}{2500815513162268870158473} a^{15} + \frac{1697652363865706237226}{2500815513162268870158473} a^{14} - \frac{1166949394065592944895700}{2500815513162268870158473} a^{13} - \frac{1073518427980423137596043}{2500815513162268870158473} a^{12} + \frac{464546549438885551817124}{2500815513162268870158473} a^{11} - \frac{42756028718204465419828}{108731109267924733485151} a^{10} + \frac{881600618826018138209950}{2500815513162268870158473} a^{9} - \frac{513539298601153089771893}{2500815513162268870158473} a^{8} + \frac{26383397476969209374904}{108731109267924733485151} a^{7} + \frac{533315369167227576705489}{2500815513162268870158473} a^{6} + \frac{556380688502412166805899}{2500815513162268870158473} a^{5} + \frac{869128350454349207803622}{2500815513162268870158473} a^{4} - \frac{502247045912569728268438}{2500815513162268870158473} a^{3} + \frac{1064361726776575518065992}{2500815513162268870158473} a^{2} + \frac{879075634078993107364279}{2500815513162268870158473} a + \frac{983151396848937985816421}{2500815513162268870158473}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4843.66967195 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 63 conjugacy class representatives for t16n1666 are not computed |
| Character table for t16n1666 is not computed |
Intermediate fields
| 4.0.229.1, 8.0.1520789.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||
| 229 | Data not computed | ||||||