Normalized defining polynomial
\( x^{16} - 8 x^{15} - 18 x^{14} + 266 x^{13} - 315 x^{12} - 1932 x^{11} + 6445 x^{10} - 7222 x^{9} + 10054 x^{8} - 30720 x^{7} + 164141 x^{6} - 380752 x^{5} + 580060 x^{4} - 564240 x^{3} + 28144 x^{2} + 196096 x + 1002752 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52944586525988002867127761920001=11^{8}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{1}{16} a^{4} - \frac{7}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{3}{16} a^{5} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{160} a^{12} + \frac{1}{40} a^{11} - \frac{1}{160} a^{10} - \frac{1}{16} a^{9} + \frac{1}{40} a^{8} - \frac{1}{80} a^{7} - \frac{11}{160} a^{6} + \frac{1}{20} a^{5} + \frac{23}{160} a^{4} - \frac{3}{10} a^{3} + \frac{3}{20} a^{2} + \frac{1}{20} a - \frac{2}{5}$, $\frac{1}{160} a^{13} + \frac{3}{160} a^{11} + \frac{1}{40} a^{10} - \frac{3}{80} a^{9} + \frac{1}{80} a^{8} - \frac{3}{160} a^{7} + \frac{3}{40} a^{6} + \frac{11}{160} a^{5} - \frac{3}{16} a^{4} - \frac{7}{80} a^{3} + \frac{3}{40} a^{2} - \frac{7}{20} a - \frac{2}{5}$, $\frac{1}{23084379881759360} a^{14} - \frac{7}{23084379881759360} a^{13} + \frac{67512995758907}{23084379881759360} a^{12} - \frac{405077974553351}{23084379881759360} a^{11} + \frac{217628524731481}{11542189940879680} a^{10} - \frac{674308982897923}{11542189940879680} a^{9} - \frac{69258077550041}{23084379881759360} a^{8} + \frac{205466979933749}{4616875976351872} a^{7} + \frac{2066877812730523}{23084379881759360} a^{6} - \frac{642733022638877}{4616875976351872} a^{5} - \frac{17905275273721}{721386871304980} a^{4} + \frac{1681784212848527}{5771094970439840} a^{3} - \frac{9939046932437}{721386871304980} a^{2} - \frac{54956027091557}{288554748521992} a + \frac{12067409170063}{360693435652490}$, $\frac{1}{6095822942236548917120} a^{15} + \frac{66013}{3047911471118274458560} a^{14} - \frac{17129029247261887}{47623616736223038415} a^{13} + \frac{128621336398759831}{190494466944892153660} a^{12} - \frac{25190864696694597009}{6095822942236548917120} a^{11} - \frac{4467751664084346281}{152395573555913722928} a^{10} - \frac{84342159808794181287}{6095822942236548917120} a^{9} + \frac{38601425220798413037}{761977867779568614640} a^{8} - \frac{5600055976542545323}{152395573555913722928} a^{7} + \frac{142233325634489393499}{3047911471118274458560} a^{6} + \frac{155659954239002295907}{6095822942236548917120} a^{5} - \frac{18202969294342416513}{95247233472446076830} a^{4} - \frac{368693062003742538097}{1523955735559137229280} a^{3} + \frac{120907107884672410027}{380988933889784307320} a^{2} + \frac{15445482687155893385}{76197786777956861464} a + \frac{14634888787838009009}{95247233472446076830}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2158309583.94 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.2.87131.1, 4.0.85301249.2, 4.2.7754659.1, 8.4.81756214392809.1, 8.0.675671193329.1, 8.0.7276303080960001.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |