Normalized defining polynomial
\( x^{16} - x^{15} + 18 x^{14} + 16 x^{13} + 175 x^{12} + 81 x^{11} + 401 x^{10} - 464 x^{9} + 15 x^{8} - 1766 x^{7} + 1740 x^{6} + 1208 x^{5} + 2864 x^{4} - 6368 x^{3} + 1664 x^{2} + 6656 x + 4096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52703064995487500398531609=17^{12}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{11} - \frac{1}{8} a^{9} + \frac{7}{32} a^{8} + \frac{15}{32} a^{7} + \frac{3}{32} a^{6} + \frac{5}{16} a^{5} + \frac{7}{32} a^{4} - \frac{1}{4} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{64} a^{9} + \frac{1}{64} a^{8} - \frac{27}{64} a^{7} - \frac{7}{16} a^{6} - \frac{29}{64} a^{5} + \frac{9}{32} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8576} a^{14} - \frac{63}{8576} a^{13} - \frac{13}{2144} a^{12} + \frac{25}{1072} a^{11} + \frac{1031}{8576} a^{10} + \frac{703}{8576} a^{9} + \frac{1911}{8576} a^{8} - \frac{993}{4288} a^{7} + \frac{57}{128} a^{6} + \frac{531}{1072} a^{5} - \frac{419}{2144} a^{4} - \frac{413}{1072} a^{3} - \frac{1}{268} a^{2} - \frac{57}{268} a - \frac{19}{67}$, $\frac{1}{426552752323785657130496} a^{15} + \frac{15725417094358354715}{426552752323785657130496} a^{14} - \frac{13842654159322973175}{11225072429573306766592} a^{13} + \frac{409924278250864327637}{53319094040473207141312} a^{12} + \frac{5664440862768296206255}{426552752323785657130496} a^{11} + \frac{49282614242025735424245}{426552752323785657130496} a^{10} - \frac{48922751761629294447859}{426552752323785657130496} a^{9} + \frac{11659081336374882692571}{106638188080946414282624} a^{8} - \frac{63435938167516750159057}{426552752323785657130496} a^{7} + \frac{64877075596455671679263}{213276376161892828565248} a^{6} - \frac{24988362128260841952143}{106638188080946414282624} a^{5} - \frac{23969254767814299155431}{53319094040473207141312} a^{4} + \frac{431979722944635120533}{26659547020236603570656} a^{3} + \frac{1620480096989990845859}{13329773510118301785328} a^{2} + \frac{478555723622487539213}{1666221688764787723166} a - \frac{248730861481335813607}{833110844382393861583}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30710846.4203 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.19363.1, 8.0.6373738073.1, 8.2.7259687665147.2, 8.2.427040450891.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |