Properties

Label 16.0.526614392658198528.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{40}\cdot 3^{8}\cdot 73$
Root discriminant $12.81$
Ramified primes $2, 3, 73$
Class number $1$
Class group Trivial
Galois group 16T1378

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, -32, 112, -256, 476, -752, 1000, -1128, 1102, -944, 708, -456, 246, -108, 36, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 36*x^14 - 108*x^13 + 246*x^12 - 456*x^11 + 708*x^10 - 944*x^9 + 1102*x^8 - 1128*x^7 + 1000*x^6 - 752*x^5 + 476*x^4 - 256*x^3 + 112*x^2 - 32*x + 4)
 
gp: K = bnfinit(x^16 - 8*x^15 + 36*x^14 - 108*x^13 + 246*x^12 - 456*x^11 + 708*x^10 - 944*x^9 + 1102*x^8 - 1128*x^7 + 1000*x^6 - 752*x^5 + 476*x^4 - 256*x^3 + 112*x^2 - 32*x + 4, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 36 x^{14} - 108 x^{13} + 246 x^{12} - 456 x^{11} + 708 x^{10} - 944 x^{9} + 1102 x^{8} - 1128 x^{7} + 1000 x^{6} - 752 x^{5} + 476 x^{4} - 256 x^{3} + 112 x^{2} - 32 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(526614392658198528=2^{40}\cdot 3^{8}\cdot 73\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 73$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{10} a^{13} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{50} a^{14} + \frac{1}{50} a^{13} - \frac{1}{50} a^{12} + \frac{1}{25} a^{11} - \frac{4}{25} a^{9} + \frac{3}{25} a^{8} - \frac{6}{25} a^{7} + \frac{4}{25} a^{6} - \frac{12}{25} a^{5} - \frac{2}{25} a^{4} + \frac{8}{25} a^{3} + \frac{7}{25} a^{2} + \frac{7}{25} a - \frac{8}{25}$, $\frac{1}{50} a^{15} - \frac{1}{25} a^{13} - \frac{1}{25} a^{12} - \frac{1}{25} a^{11} + \frac{1}{25} a^{10} - \frac{3}{25} a^{9} - \frac{4}{25} a^{8} + \frac{2}{5} a^{7} - \frac{11}{25} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{9}{25} a^{3} + \frac{2}{5} a - \frac{2}{25}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{452}{25} a^{15} - \frac{6843}{50} a^{14} + \frac{29599}{50} a^{13} - \frac{16979}{10} a^{12} + \frac{92928}{25} a^{11} - \frac{166136}{25} a^{10} + \frac{49712}{5} a^{9} - \frac{127923}{10} a^{8} + \frac{360628}{25} a^{7} - \frac{354871}{25} a^{6} + \frac{299546}{25} a^{5} - \frac{211274}{25} a^{4} + \frac{124482}{25} a^{3} - \frac{62341}{25} a^{2} + \frac{23924}{25} a - \frac{4234}{25} \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2118.69220478 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1378:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 95 conjugacy class representatives for t16n1378 are not computed
Character table for t16n1378 is not computed

Intermediate fields

\(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(i, \sqrt{6})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\zeta_{8})\), \(\Q(\zeta_{24})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$73$$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.1.1$x^{2} - 73$$2$$1$$1$$C_2$$[\ ]_{2}$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$