Normalized defining polynomial
\( x^{16} - 4 x^{15} + 12 x^{14} - 28 x^{13} - 3 x^{12} + 116 x^{11} - 214 x^{10} + 380 x^{9} + 230 x^{8} - 2552 x^{7} + 2080 x^{6} - 192 x^{5} + 6418 x^{4} - 7392 x^{3} - 572 x^{2} - 3112 x + 5188 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52554919692301559136256=2^{38}\cdot 17^{6}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{26} a^{13} + \frac{3}{26} a^{12} - \frac{1}{13} a^{11} + \frac{2}{13} a^{10} - \frac{11}{26} a^{9} - \frac{1}{2} a^{8} + \frac{4}{13} a^{7} + \frac{5}{13} a^{6} - \frac{3}{13} a^{5} + \frac{3}{13} a^{4} - \frac{3}{13} a^{3} + \frac{1}{13} a^{2} + \frac{4}{13} a + \frac{4}{13}$, $\frac{1}{52} a^{14} - \frac{11}{52} a^{12} + \frac{5}{26} a^{11} - \frac{5}{26} a^{10} - \frac{3}{26} a^{9} - \frac{9}{26} a^{8} + \frac{3}{13} a^{7} - \frac{5}{26} a^{6} + \frac{6}{13} a^{5} + \frac{1}{26} a^{4} + \frac{5}{13} a^{3} - \frac{6}{13} a^{2} - \frac{4}{13} a - \frac{6}{13}$, $\frac{1}{1078856133818746065467464} a^{15} + \frac{531454219810216111891}{56781901779934003445656} a^{14} - \frac{5211896432823320055513}{1078856133818746065467464} a^{13} - \frac{85659753797665291964809}{1078856133818746065467464} a^{12} - \frac{53087622351721852343803}{539428066909373032733732} a^{11} - \frac{34404300506272170595085}{539428066909373032733732} a^{10} + \frac{2087673992640575371057}{14195475444983500861414} a^{9} - \frac{94160626892792468738}{7097737722491750430707} a^{8} - \frac{7498558726452741209733}{41494466685336387133364} a^{7} - \frac{131806414633487692205661}{539428066909373032733732} a^{6} + \frac{183838063770363895790913}{539428066909373032733732} a^{5} - \frac{5189751953286611728463}{539428066909373032733732} a^{4} + \frac{31278855050192590579977}{134857016727343258183433} a^{3} + \frac{4528479480650764556675}{10373616671334096783341} a^{2} + \frac{899182508134183384531}{20747233342668193566682} a + \frac{134339410160101047403821}{269714033454686516366866}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3164872700583602375}{904321989789393181448} a^{15} + \frac{426617025850676003}{47595894199441746392} a^{14} - \frac{25748774435143957713}{904321989789393181448} a^{13} + \frac{48985781924817174107}{904321989789393181448} a^{12} + \frac{43771722361302480115}{452160994894696590724} a^{11} - \frac{129681606788970476699}{452160994894696590724} a^{10} + \frac{2005803451071654709}{5949486774930218299} a^{9} - \frac{4512528418528732965}{5949486774930218299} a^{8} - \frac{936238915884145374929}{452160994894696590724} a^{7} + \frac{2814463758292325072291}{452160994894696590724} a^{6} + \frac{832144783025781262169}{452160994894696590724} a^{5} + \frac{628902688467029410685}{452160994894696590724} a^{4} - \frac{2079867121207669237062}{113040248723674147681} a^{3} - \frac{67577857290306446145}{113040248723674147681} a^{2} + \frac{791551948616480110757}{226080497447348295362} a + \frac{2723938291671262742839}{226080497447348295362} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 537572.189549 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), 4.0.1088.2, 4.4.4352.1, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.8.22.90 | $x^{8} + 4 x^{7} + 14 x^{4} + 12 x^{2} + 2$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ | |
| $17$ | 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $89$ | $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |