Normalized defining polynomial
\( x^{16} - 6 x^{15} - 8 x^{14} + 160 x^{13} - 400 x^{12} - 1282 x^{11} + 11189 x^{10} - 35603 x^{9} + 58718 x^{8} - 16818 x^{7} - 136633 x^{6} + 401269 x^{5} - 424715 x^{4} + 202432 x^{3} + 912840 x^{2} - 1240424 x + 1871824 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(525162048993676835600871662401=41^{14}\cdot 61^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{187912} a^{14} + \frac{15913}{187912} a^{13} - \frac{18591}{187912} a^{12} + \frac{35157}{187912} a^{11} - \frac{25087}{187912} a^{10} - \frac{47149}{187912} a^{9} + \frac{8471}{23489} a^{8} + \frac{26383}{187912} a^{7} - \frac{24269}{187912} a^{6} + \frac{88209}{187912} a^{5} + \frac{1108}{23489} a^{4} - \frac{1901}{187912} a^{3} - \frac{24213}{93956} a^{2} - \frac{1051}{23489} a + \frac{2661}{23489}$, $\frac{1}{488708838952713221947905651093476635768} a^{15} + \frac{52551488926332635439465910271453}{122177209738178305486976412773369158942} a^{14} + \frac{3197954393116789556531399523651035881}{244354419476356610973952825546738317884} a^{13} + \frac{21579514758119188571512308139311612867}{244354419476356610973952825546738317884} a^{12} - \frac{14167802438737455398423800468591775975}{244354419476356610973952825546738317884} a^{11} - \frac{7045815865941621677563697951489094053}{122177209738178305486976412773369158942} a^{10} - \frac{81245336897723447788720650727191163349}{488708838952713221947905651093476635768} a^{9} + \frac{237328044216924088957482597025938979737}{488708838952713221947905651093476635768} a^{8} + \frac{50911840457213547865826877268340812733}{122177209738178305486976412773369158942} a^{7} - \frac{24379437087737200664356989970650669197}{122177209738178305486976412773369158942} a^{6} - \frac{215636772790873109765309002621178561819}{488708838952713221947905651093476635768} a^{5} - \frac{144631032311892750402283375233715413987}{488708838952713221947905651093476635768} a^{4} + \frac{191096995483358708837841896734212075159}{488708838952713221947905651093476635768} a^{3} + \frac{15822595946986194144903547233064309569}{61088604869089152743488206386684579471} a^{2} - \frac{21557484595581842169999146628224671721}{61088604869089152743488206386684579471} a - \frac{25314792752101033990843225674845100444}{61088604869089152743488206386684579471}$
Class group and class number
$C_{41}$, which has order $41$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2911738.86032 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 4.4.102541.1, 4.4.4204181.1, 8.0.724680653111201.1, 8.0.194754273881.1, 8.8.17675137880761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $61$ | 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |