Normalized defining polynomial
\( x^{16} + 32 x^{14} - 20 x^{13} + 770 x^{12} + 80 x^{11} + 14572 x^{10} + 6960 x^{9} + 190844 x^{8} + 143120 x^{7} + 1964998 x^{6} + 2116800 x^{5} + 14613895 x^{4} + 14908160 x^{3} + 60000708 x^{2} + 36634200 x + 94703321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(524546382716993536000000000000=2^{32}\cdot 5^{12}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1160=2^{3}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1160}(1,·)$, $\chi_{1160}(579,·)$, $\chi_{1160}(581,·)$, $\chi_{1160}(1159,·)$, $\chi_{1160}(523,·)$, $\chi_{1160}(1103,·)$, $\chi_{1160}(407,·)$, $\chi_{1160}(987,·)$, $\chi_{1160}(349,·)$, $\chi_{1160}(929,·)$, $\chi_{1160}(231,·)$, $\chi_{1160}(811,·)$, $\chi_{1160}(173,·)$, $\chi_{1160}(753,·)$, $\chi_{1160}(57,·)$, $\chi_{1160}(637,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{1353} a^{14} + \frac{10}{1353} a^{13} - \frac{95}{1353} a^{12} + \frac{368}{1353} a^{11} - \frac{13}{123} a^{10} - \frac{183}{451} a^{9} + \frac{17}{451} a^{8} - \frac{167}{451} a^{7} - \frac{280}{1353} a^{6} - \frac{317}{1353} a^{5} - \frac{53}{1353} a^{4} - \frac{158}{451} a^{3} + \frac{217}{1353} a^{2} - \frac{124}{451} a - \frac{544}{1353}$, $\frac{1}{14562958817682548360588440708899381795093} a^{15} + \frac{1448388805612017972403177999042044242}{14562958817682548360588440708899381795093} a^{14} - \frac{1185882480101102933666493785180958231988}{14562958817682548360588440708899381795093} a^{13} - \frac{702654990271262622186162831445975150907}{14562958817682548360588440708899381795093} a^{12} - \frac{2127495646323370931813254366248752394991}{4854319605894182786862813569633127265031} a^{11} + \frac{1152586260751022159571046664637149517564}{4854319605894182786862813569633127265031} a^{10} - \frac{865896640089728556753048158047307331371}{4854319605894182786862813569633127265031} a^{9} + \frac{1681051048762922127250596906442998095475}{4854319605894182786862813569633127265031} a^{8} + \frac{554400889868752886073049066911035187512}{14562958817682548360588440708899381795093} a^{7} + \frac{2025978063989154443440846704331859664178}{4854319605894182786862813569633127265031} a^{6} - \frac{6968385205154473605414707490981163314394}{14562958817682548360588440708899381795093} a^{5} - \frac{1546618700076252002470628428612418562430}{4854319605894182786862813569633127265031} a^{4} - \frac{1252720607703590671630716488237645875930}{4854319605894182786862813569633127265031} a^{3} + \frac{3475933412431640211734740002359813803952}{14562958817682548360588440708899381795093} a^{2} + \frac{1313736143930597627056630796235793805252}{4854319605894182786862813569633127265031} a - \frac{1006166134389883224186597729755941880915}{4854319605894182786862813569633127265031}$
Class group and class number
$C_{4}\times C_{16}\times C_{240}$, which has order $15360$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.135357253273 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |