Normalized defining polynomial
\( x^{16} - 7 x^{15} + 26 x^{14} - 66 x^{13} + 125 x^{12} - 180 x^{11} + 195 x^{10} - 148 x^{9} + 60 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(5236602731044893\)
\(\medspace = 3^{8}\cdot 13^{4}\cdot 181^{2}\cdot 853\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.60\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}13^{1/2}181^{1/2}853^{1/2}\approx 2453.839236787936$ | ||
Ramified primes: |
\(3\), \(13\), \(181\), \(853\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{853}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2041}a^{15}-\frac{924}{2041}a^{14}+\frac{319}{2041}a^{13}-\frac{726}{2041}a^{12}+\frac{501}{2041}a^{11}-\frac{372}{2041}a^{10}+\frac{472}{2041}a^{9}-\frac{280}{2041}a^{8}-\frac{346}{2041}a^{7}+\frac{948}{2041}a^{6}+\frac{92}{2041}a^{5}-\frac{632}{2041}a^{4}-\frac{122}{2041}a^{3}-\frac{383}{2041}a^{2}+\frac{168}{2041}a-\frac{986}{2041}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{917}{157} a^{15} + \frac{5945}{157} a^{14} - \frac{20599}{157} a^{13} + \frac{48889}{157} a^{12} - \frac{86228}{157} a^{11} + \frac{113631}{157} a^{10} - \frac{108933}{157} a^{9} + \frac{66162}{157} a^{8} - \frac{9749}{157} a^{7} - \frac{29366}{157} a^{6} + \frac{37311}{157} a^{5} - \frac{23964}{157} a^{4} + \frac{4643}{157} a^{3} + \frac{5654}{157} a^{2} - \frac{5063}{157} a + \frac{1412}{157} \)
(order $6$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{3262}{2041}a^{15}-\frac{24023}{2041}a^{14}+\frac{91513}{2041}a^{13}-\frac{235367}{2041}a^{12}+\frac{448441}{2041}a^{11}-\frac{646066}{2041}a^{10}+\frac{692649}{2041}a^{9}-\frac{509242}{2041}a^{8}+\frac{179629}{2041}a^{7}+\frac{106393}{2041}a^{6}-\frac{218310}{2041}a^{5}+\frac{173311}{2041}a^{4}-\frac{61199}{2041}a^{3}-\frac{20664}{2041}a^{2}+\frac{35725}{2041}a-\frac{11962}{2041}$, $\frac{5790}{2041}a^{15}-\frac{35196}{2041}a^{14}+\frac{118283}{2041}a^{13}-\frac{274615}{2041}a^{12}+\frac{476082}{2041}a^{11}-\frac{617007}{2041}a^{10}+\frac{585748}{2041}a^{9}-\frac{353739}{2041}a^{8}+\frac{62152}{2041}a^{7}+\frac{143541}{2041}a^{6}-\frac{181670}{2041}a^{5}+\frac{118611}{2041}a^{4}-\frac{20604}{2041}a^{3}-\frac{25536}{2041}a^{2}+\frac{23655}{2041}a-\frac{6386}{2041}$, $\frac{1343}{2041}a^{15}-\frac{6127}{2041}a^{14}+\frac{14094}{2041}a^{13}-\frac{17789}{2041}a^{12}+\frac{3395}{2041}a^{11}+\frac{41269}{2041}a^{10}-\frac{98823}{2041}a^{9}+\frac{130128}{2041}a^{8}-\frac{99339}{2041}a^{7}+\frac{34277}{2041}a^{6}+\frac{21506}{2041}a^{5}-\frac{36458}{2041}a^{4}+\frac{30049}{2041}a^{3}-\frac{4119}{2041}a^{2}-\frac{9091}{2041}a+\frac{6534}{2041}$, $\frac{6956}{2041}a^{15}-\frac{43096}{2041}a^{14}+\frac{145308}{2041}a^{13}-\frac{337387}{2041}a^{12}+\frac{582654}{2041}a^{11}-\frac{748691}{2041}a^{10}+\frac{695244}{2041}a^{9}-\frac{394479}{2041}a^{8}+\frac{26096}{2041}a^{7}+\frac{216163}{2041}a^{6}-\frac{247883}{2041}a^{5}+\frac{147074}{2041}a^{4}-\frac{17945}{2041}a^{3}-\frac{41463}{2041}a^{2}+\frac{31771}{2041}a-\frac{6979}{2041}$, $\frac{1180}{2041}a^{15}-\frac{6549}{2041}a^{14}+\frac{19245}{2041}a^{13}-\frac{38239}{2041}a^{12}+\frac{54397}{2041}a^{11}-\frac{51170}{2041}a^{10}+\frac{24259}{2041}a^{9}+\frac{10447}{2041}a^{8}-\frac{24572}{2041}a^{7}+\frac{14459}{2041}a^{6}+\frac{2428}{2041}a^{5}-\frac{11000}{2041}a^{4}+\frac{13197}{2041}a^{3}-\frac{4961}{2041}a^{2}-\frac{3819}{2041}a+\frac{3972}{2041}$, $\frac{7097}{2041}a^{15}-\frac{40715}{2041}a^{14}+\frac{131098}{2041}a^{13}-\frac{292801}{2041}a^{12}+\frac{487974}{2041}a^{11}-\frac{601125}{2041}a^{10}+\frac{533204}{2041}a^{9}-\frac{276802}{2041}a^{8}-\frac{239}{2041}a^{7}+\frac{174305}{2041}a^{6}-\frac{177763}{2041}a^{5}+\frac{100823}{2041}a^{4}-\frac{450}{2041}a^{3}-\frac{28113}{2041}a^{2}+\frac{20762}{2041}a-\frac{3135}{2041}$, $a^{15}-7a^{14}+25a^{13}-60a^{12}+106a^{11}-139a^{10}+130a^{9}-74a^{8}+4a^{7}+39a^{6}-44a^{5}+26a^{4}-3a^{3}-9a^{2}+5a$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 29.7678343854 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 29.7678343854 \cdot 1}{6\cdot\sqrt{5236602731044893}}\cr\approx \mathstrut & 0.166536764681 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
A solvable group of order 32768 |
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.117.1, 8.0.2477709.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(13\)
| 13.2.0.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
13.2.0.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.4.0.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
13.4.2.1 | $x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
13.4.2.1 | $x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(181\)
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
181.2.1.1 | $x^{2} + 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.1.1 | $x^{2} + 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.4.0.1 | $x^{4} + 6 x^{2} + 105 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(853\)
| $\Q_{853}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{853}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |