Normalized defining polynomial
\( x^{16} - 6 x^{15} + 20 x^{14} - 54 x^{13} + 119 x^{12} - 198 x^{11} + 242 x^{10} - 222 x^{9} + 163 x^{8} - 102 x^{7} + 58 x^{6} - 36 x^{5} + 23 x^{4} - 12 x^{3} + 4 x^{2} + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52264543887360000=2^{16}\cdot 3^{12}\cdot 5^{4}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{3}$, $\frac{1}{130} a^{14} - \frac{6}{65} a^{13} - \frac{27}{130} a^{12} - \frac{12}{65} a^{11} + \frac{31}{130} a^{10} + \frac{1}{65} a^{9} - \frac{7}{65} a^{8} + \frac{7}{65} a^{7} - \frac{1}{13} a^{6} - \frac{9}{65} a^{5} - \frac{9}{130} a^{4} - \frac{5}{13} a^{3} + \frac{29}{130} a^{2} + \frac{22}{65} a + \frac{59}{130}$, $\frac{1}{130} a^{15} + \frac{12}{65} a^{13} - \frac{23}{130} a^{12} + \frac{3}{130} a^{11} - \frac{8}{65} a^{10} + \frac{1}{13} a^{9} - \frac{12}{65} a^{8} + \frac{14}{65} a^{7} - \frac{4}{65} a^{6} + \frac{7}{26} a^{5} - \frac{14}{65} a^{4} + \frac{7}{65} a^{3} - \frac{63}{130} a^{2} - \frac{63}{130} a + \frac{29}{65}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{163}{130} a^{15} - \frac{823}{130} a^{14} + \frac{2543}{130} a^{13} - \frac{6683}{130} a^{12} + \frac{536}{5} a^{11} - \frac{21361}{130} a^{10} + \frac{23839}{130} a^{9} - \frac{4081}{26} a^{8} + \frac{14557}{130} a^{7} - \frac{8869}{130} a^{6} + \frac{2492}{65} a^{5} - \frac{1536}{65} a^{4} + \frac{916}{65} a^{3} - \frac{428}{65} a^{2} + \frac{59}{130} a - \frac{19}{65} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 248.17999333 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4):C_2^2$ (as 16T115):
| A solvable group of order 64 |
| The 25 conjugacy class representatives for $(C_2\times D_4):C_2^2$ |
| Character table for $(C_2\times D_4):C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), 4.0.189.1, \(\Q(\zeta_{12})\), 4.0.3024.2, 8.0.9144576.3, 8.0.4665600.1, 8.0.25401600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |