Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} + 4 x^{13} - 30 x^{12} + 12 x^{11} + 170 x^{10} - 536 x^{9} + 1343 x^{8} - 2944 x^{7} + 4898 x^{6} - 6384 x^{5} + 7104 x^{4} - 6760 x^{3} + 5472 x^{2} - 3224 x + 961 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5220559591833600000000=2^{36}\cdot 3^{4}\cdot 5^{8}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1085} a^{14} + \frac{96}{217} a^{13} + \frac{477}{1085} a^{12} - \frac{388}{1085} a^{11} - \frac{6}{31} a^{10} + \frac{424}{1085} a^{9} + \frac{321}{1085} a^{8} - \frac{48}{1085} a^{7} - \frac{313}{1085} a^{6} - \frac{459}{1085} a^{5} + \frac{424}{1085} a^{4} - \frac{2}{1085} a^{3} - \frac{19}{217} a^{2} - \frac{257}{1085} a - \frac{16}{35}$, $\frac{1}{39102249320118455218475} a^{15} + \frac{16203918486260167498}{39102249320118455218475} a^{14} + \frac{5052508901869289604132}{39102249320118455218475} a^{13} + \frac{7131275781455470994618}{39102249320118455218475} a^{12} + \frac{2947343318291816948416}{39102249320118455218475} a^{11} + \frac{11303937954393504795554}{39102249320118455218475} a^{10} - \frac{372830779316532322497}{39102249320118455218475} a^{9} + \frac{3022150119863372423743}{7820449864023691043695} a^{8} - \frac{13767226785926685201647}{39102249320118455218475} a^{7} + \frac{11209762722689932886997}{39102249320118455218475} a^{6} + \frac{13359761299446014175227}{39102249320118455218475} a^{5} - \frac{238010435237529989550}{1564089972804738208739} a^{4} + \frac{32626075885416708361}{69950356565507075525} a^{3} + \frac{504097878090695231281}{3007865332316804247575} a^{2} - \frac{10631415673955912001622}{39102249320118455218475} a - \frac{239389528305799873013}{1261362881294143716725}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{110760213526901669858}{39102249320118455218475} a^{15} - \frac{408153835325711414536}{39102249320118455218475} a^{14} + \frac{553908133380467601531}{39102249320118455218475} a^{13} + \frac{611130072714456398479}{39102249320118455218475} a^{12} - \frac{3192771348254505902062}{39102249320118455218475} a^{11} + \frac{521647822046338798157}{39102249320118455218475} a^{10} + \frac{18969674933105708015494}{39102249320118455218475} a^{9} - \frac{311361764131532137417}{223441424686391172677} a^{8} + \frac{133363816425398432818234}{39102249320118455218475} a^{7} - \frac{283455541207589392924739}{39102249320118455218475} a^{6} + \frac{65226321344293867214053}{5586035617159779316925} a^{5} - \frac{112387540241554003071836}{7820449864023691043695} a^{4} + \frac{1059778024813514658973}{69950356565507075525} a^{3} - \frac{40720786130774083416402}{3007865332316804247575} a^{2} + \frac{393683261947098703413564}{39102249320118455218475} a - \frac{5798675197643267780584}{1261362881294143716725} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18484.9595466 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times Q_8:C_2^2$ (as 16T69):
| A solvable group of order 64 |
| The 34 conjugacy class representatives for $C_2\times Q_8:C_2^2$ |
| Character table for $C_2\times Q_8:C_2^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |