Normalized defining polynomial
\( x^{16} - 6 x^{15} + 99 x^{14} - 616 x^{13} + 5369 x^{12} - 23796 x^{11} + 170050 x^{10} - 549695 x^{9} + 4065355 x^{8} - 14810136 x^{7} + 10311242 x^{6} + 138905845 x^{5} + 1881736663 x^{4} + 886766664 x^{3} + 402208164 x^{2} - 3217639232 x + 25172218864 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5215553034727934460124227765005778951509=149^{9}\cdot 331^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $303.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $149, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{4} a^{13} - \frac{1}{16} a^{12} + \frac{3}{8} a^{11} + \frac{1}{16} a^{10} + \frac{3}{8} a^{9} + \frac{1}{8} a^{8} - \frac{3}{16} a^{7} - \frac{3}{16} a^{6} + \frac{3}{8} a^{5} - \frac{3}{8} a^{4} + \frac{1}{16} a^{3} + \frac{1}{16} a^{2} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{27289735963008147602857125163223178687556948192623813646697957521138792113184} a^{15} + \frac{73126774926895388947143722190333845349762856395912329346399187765683973357}{3411216995376018450357140645402897335944618524077976705837244690142349014148} a^{14} - \frac{2734592143720634531563620997576334174142691435746136063856280461150375358033}{27289735963008147602857125163223178687556948192623813646697957521138792113184} a^{13} + \frac{3243776744260688365202985928954629515329878283092720503217692156818001215261}{13644867981504073801428562581611589343778474096311906823348978760569396056592} a^{12} - \frac{9285230376030218222465376601482013010618812389505460525411869332091863555607}{27289735963008147602857125163223178687556948192623813646697957521138792113184} a^{11} + \frac{6803015028731110437865267168475693553347124154765119389835549790879273197385}{13644867981504073801428562581611589343778474096311906823348978760569396056592} a^{10} + \frac{413942189054460188531802724078597087257095986978118523112071153581023697025}{1049605229346467215494504813970122257213728776639377447949921443120722773584} a^{9} - \frac{13525785605406984337995489898422015426659721621107375090045660703113690241}{28104774421223632958658213350384324086052469817326275640265661710750558304} a^{8} + \frac{8864710094335951170694965937320271649640633413277733241075060299601342955817}{27289735963008147602857125163223178687556948192623813646697957521138792113184} a^{7} + \frac{244482462940029384249292887740557077656521537450548336349006570108693628489}{13644867981504073801428562581611589343778474096311906823348978760569396056592} a^{6} + \frac{4567145925889767228634889893532503431098123318132017362370478730008126198121}{13644867981504073801428562581611589343778474096311906823348978760569396056592} a^{5} + \frac{1142740669163906633542886555847507344980842325769744967684283884809280258425}{27289735963008147602857125163223178687556948192623813646697957521138792113184} a^{4} + \frac{5141204548429553422946396208525305513023482449078039941309090467933076453357}{27289735963008147602857125163223178687556948192623813646697957521138792113184} a^{3} - \frac{4491771853079262756584484500178290687122212759688399876757304664170776418131}{13644867981504073801428562581611589343778474096311906823348978760569396056592} a^{2} - \frac{968887899822586361951326600030402206562511111342110421534293822271461044541}{6822433990752036900714281290805794671889237048155953411674489380284698028296} a - \frac{25741907399407278563849003073824604169978807819160045756078866756311014157}{131200653668308401936813101746265282151716097079922180993740180390090346698}$
Class group and class number
$C_{2}\times C_{2}\times C_{300}$, which has order $1200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31016149776.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 54 conjugacy class representatives for t16n1675 are not computed |
| Character table for t16n1675 is not computed |
Intermediate fields
| \(\Q(\sqrt{-49319}) \), 4.2.331.1, 8.0.5916393465826065121.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 149 | Data not computed | ||||||
| 331 | Data not computed | ||||||