Normalized defining polynomial
\( x^{16} - 4 x^{15} - 32 x^{14} + 145 x^{13} + 1429 x^{12} + 3357 x^{11} - 25164 x^{10} - 107121 x^{9} + 79776 x^{8} - 1059869 x^{7} + 41589315 x^{6} + 74545252 x^{5} + 1059195894 x^{4} + 1301275602 x^{3} + 20404848082 x^{2} + 5295191495 x + 153463978421 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5215553034727934460124227765005778951509=149^{9}\cdot 331^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $303.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $149, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{46} a^{13} - \frac{11}{46} a^{12} - \frac{11}{23} a^{11} + \frac{9}{23} a^{10} + \frac{7}{23} a^{9} - \frac{1}{2} a^{8} - \frac{13}{46} a^{7} - \frac{3}{46} a^{6} - \frac{8}{23} a^{5} + \frac{17}{46} a^{4} - \frac{8}{23} a^{3} + \frac{5}{23} a^{2} - \frac{11}{46} a + \frac{11}{46}$, $\frac{1}{46} a^{14} - \frac{5}{46} a^{12} + \frac{3}{23} a^{11} - \frac{9}{23} a^{10} - \frac{7}{46} a^{9} + \frac{5}{23} a^{8} - \frac{4}{23} a^{7} - \frac{3}{46} a^{6} - \frac{21}{46} a^{5} - \frac{13}{46} a^{4} + \frac{9}{23} a^{3} + \frac{7}{46} a^{2} - \frac{9}{23} a - \frac{17}{46}$, $\frac{1}{1028725612755685508784449526630273174900915666043941173811831029501926670} a^{15} + \frac{9663783906830042464304575938513654073693634547917248513915352765038149}{1028725612755685508784449526630273174900915666043941173811831029501926670} a^{14} + \frac{14521455759145693188399499092900003488099729826516261973379640190080}{7913273944274503913726534820232870576160889738799547490860238688476359} a^{13} - \frac{14922309051319518087237358652847171165027214868403596586332196358363642}{102872561275568550878444952663027317490091566604394117381183102950192667} a^{12} - \frac{132283328896534624392923703930607312251371457189320584716511067094986008}{514362806377842754392224763315136587450457833021970586905915514750963335} a^{11} + \frac{33249790091526042926430317531675599058392548572583776902397231186719003}{79132739442745039137265348202328705761608897387995474908602386884763590} a^{10} - \frac{287037440976444507462978438167751712301377001708488676834716728769038717}{1028725612755685508784449526630273174900915666043941173811831029501926670} a^{9} - \frac{194901187452273478245811654352609541578668341821946756952060526674253}{538881934392711109892325577071908420587174261940252055427884248036630} a^{8} - \frac{7677183477326603214387726860410273502826627536887929764423571257007921}{102872561275568550878444952663027317490091566604394117381183102950192667} a^{7} - \frac{416850679660326555707326988707479690588159180165535822517779875612411269}{1028725612755685508784449526630273174900915666043941173811831029501926670} a^{6} - \frac{195410888710959122414507770443451468954970249336193369640874092290388511}{514362806377842754392224763315136587450457833021970586905915514750963335} a^{5} + \frac{77584583466165420752947490271859904626408666471213703051311533720974678}{514362806377842754392224763315136587450457833021970586905915514750963335} a^{4} + \frac{399736611870765848790875695032328987154859904867142485465369731781094827}{1028725612755685508784449526630273174900915666043941173811831029501926670} a^{3} + \frac{61304160080837479673163447606638518907432273539600961572794781484313563}{1028725612755685508784449526630273174900915666043941173811831029501926670} a^{2} - \frac{225616294200007675143773980079632008691692769479436278489292200130510927}{514362806377842754392224763315136587450457833021970586905915514750963335} a - \frac{15516020606597567244737709567387228768763228808666958719834497319529902}{39566369721372519568632674101164352880804448693997737454301193442381795}$
Class group and class number
$C_{2}\times C_{2}\times C_{300}$, which has order $1200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32330546487.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 54 conjugacy class representatives for t16n1675 are not computed |
| Character table for t16n1675 is not computed |
Intermediate fields
| \(\Q(\sqrt{-49319}) \), 4.2.331.1, 8.0.5916393465826065121.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 149 | Data not computed | ||||||
| 331 | Data not computed | ||||||