Properties

Label 16.0.52056337734...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{14}\cdot 31^{8}$
Root discriminant $22.77$
Ramified primes $5, 31$
Class number $6$ (GRH)
Class group $[6]$ (GRH)
Galois group $C_2^3.C_4$ (as 16T36)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14641, 0, 17303, 0, 8088, 0, 2471, 0, 275, 0, -84, 0, -2, 0, 8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 8*x^14 - 2*x^12 - 84*x^10 + 275*x^8 + 2471*x^6 + 8088*x^4 + 17303*x^2 + 14641)
 
gp: K = bnfinit(x^16 + 8*x^14 - 2*x^12 - 84*x^10 + 275*x^8 + 2471*x^6 + 8088*x^4 + 17303*x^2 + 14641, 1)
 

Normalized defining polynomial

\( x^{16} + 8 x^{14} - 2 x^{12} - 84 x^{10} + 275 x^{8} + 2471 x^{6} + 8088 x^{4} + 17303 x^{2} + 14641 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5205633773443603515625=5^{14}\cdot 31^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{13} - \frac{3}{22} a^{11} - \frac{1}{11} a^{9} - \frac{7}{22} a^{7} - \frac{1}{2} a^{4} - \frac{2}{11} a^{3} - \frac{1}{2} a^{2} - \frac{4}{11} a - \frac{1}{2}$, $\frac{1}{1317591106942} a^{14} + \frac{145680040037}{658795553471} a^{12} - \frac{226410669641}{1317591106942} a^{10} + \frac{144449869291}{658795553471} a^{8} - \frac{1}{2} a^{7} - \frac{27812300821}{119781009722} a^{6} - \frac{1}{2} a^{5} + \frac{104265494109}{1317591106942} a^{4} - \frac{196964896279}{1317591106942} a^{2} - \frac{1}{2} a - \frac{2185893561}{5444591351}$, $\frac{1}{14493502176362} a^{15} + \frac{145680040037}{7246751088181} a^{13} - \frac{1760194218498}{7246751088181} a^{11} + \frac{2265286398995}{14493502176362} a^{9} - \frac{283413422285}{658795553471} a^{7} - \frac{277265029681}{7246751088181} a^{5} - \frac{1}{2} a^{4} + \frac{5073399531489}{14493502176362} a^{3} + \frac{14147880492}{59890504861} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6}$, which has order $6$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{6666645970}{7246751088181} a^{15} - \frac{368311}{265589822} a^{14} - \frac{26945027839}{7246751088181} a^{13} - \frac{788343}{132794911} a^{12} + \frac{124426774495}{7246751088181} a^{11} + \frac{6690323}{265589822} a^{10} + \frac{146107364267}{14493502176362} a^{9} + \frac{6589819}{265589822} a^{8} - \frac{405209935551}{1317591106942} a^{7} - \frac{125468079}{265589822} a^{6} - \frac{7285065842723}{7246751088181} a^{5} - \frac{447192047}{265589822} a^{4} - \frac{46334818117569}{14493502176362} a^{3} - \frac{665679685}{132794911} a^{2} - \frac{382550349263}{119781009722} a - \frac{1244023225}{265589822} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17871.2949174 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_4$ (as 16T36):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3.C_4$
Character table for $C_2^3.C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-155}) \), \(\Q(\sqrt{-31}) \), 4.4.120125.1, \(\Q(\zeta_{5})\), \(\Q(\sqrt{5}, \sqrt{-31})\), 8.4.72150078125.1 x2, 8.0.75078125.1 x2, 8.0.14430015625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.7.2$x^{8} - 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
5.8.7.2$x^{8} - 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$31$31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$