Properties

Label 16.0.51925112029...8409.1
Degree $16$
Signature $[0, 8]$
Discriminant $37^{2}\cdot 41^{14}$
Root discriminant $40.48$
Ramified primes $37, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^5.C_2.C_2$ (as 16T258)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2789, -8386, 15546, -19048, 16785, -7452, 756, 3665, -3124, 1784, -387, -90, 180, -93, 34, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 34*x^14 - 93*x^13 + 180*x^12 - 90*x^11 - 387*x^10 + 1784*x^9 - 3124*x^8 + 3665*x^7 + 756*x^6 - 7452*x^5 + 16785*x^4 - 19048*x^3 + 15546*x^2 - 8386*x + 2789)
 
gp: K = bnfinit(x^16 - 7*x^15 + 34*x^14 - 93*x^13 + 180*x^12 - 90*x^11 - 387*x^10 + 1784*x^9 - 3124*x^8 + 3665*x^7 + 756*x^6 - 7452*x^5 + 16785*x^4 - 19048*x^3 + 15546*x^2 - 8386*x + 2789, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{15} + 34 x^{14} - 93 x^{13} + 180 x^{12} - 90 x^{11} - 387 x^{10} + 1784 x^{9} - 3124 x^{8} + 3665 x^{7} + 756 x^{6} - 7452 x^{5} + 16785 x^{4} - 19048 x^{3} + 15546 x^{2} - 8386 x + 2789 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(51925112029839400000158409=37^{2}\cdot 41^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $37, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{74} a^{14} - \frac{9}{37} a^{13} - \frac{7}{37} a^{12} - \frac{25}{74} a^{11} + \frac{7}{37} a^{10} - \frac{7}{37} a^{9} + \frac{23}{74} a^{8} - \frac{10}{37} a^{7} + \frac{11}{37} a^{6} - \frac{19}{74} a^{5} + \frac{15}{37} a^{4} + \frac{7}{74} a^{2} + \frac{2}{37} a + \frac{8}{37}$, $\frac{1}{57987838719597097393678} a^{15} - \frac{110796074420498278057}{28993919359798548696839} a^{14} + \frac{193670529310501527767}{57987838719597097393678} a^{13} - \frac{8336106514239868523427}{57987838719597097393678} a^{12} - \frac{2089490374235342733514}{28993919359798548696839} a^{11} - \frac{28097318259101519993253}{57987838719597097393678} a^{10} + \frac{10293814840126803691073}{57987838719597097393678} a^{9} + \frac{4080785180527655039773}{28993919359798548696839} a^{8} - \frac{8940042812469497054881}{57987838719597097393678} a^{7} + \frac{26669266861283605733691}{57987838719597097393678} a^{6} - \frac{5081564024809794713915}{28993919359798548696839} a^{5} - \frac{18328427207747352922495}{57987838719597097393678} a^{4} - \frac{8796690200184903691147}{57987838719597097393678} a^{3} - \frac{6965469283380625386649}{28993919359798548696839} a^{2} + \frac{15792258280557672147223}{57987838719597097393678} a - \frac{11367166511180270047991}{28993919359798548696839}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1223852.73642 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^5.C_2.C_2$ (as 16T258):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 26 conjugacy class representatives for $C_2^5.C_2.C_2$
Character table for $C_2^5.C_2.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 8.4.7205908133597.1, 8.0.194754273881.1, 8.4.175753856917.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ R R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$37$$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
$41$41.8.7.3$x^{8} - 53136$$8$$1$$7$$C_8$$[\ ]_{8}$
41.8.7.3$x^{8} - 53136$$8$$1$$7$$C_8$$[\ ]_{8}$