Normalized defining polynomial
\( x^{16} - 3 x^{15} + 7 x^{14} - 12 x^{13} + 15 x^{12} - 15 x^{11} + 12 x^{10} - 5 x^{9} - 2 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(5190614520439741\)
\(\medspace = 617^{2}\cdot 2389^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.60\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $617^{1/2}2389^{3/4}\approx 8487.986777006932$ | ||
Ramified primes: |
\(617\), \(2389\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{2389}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{692467}a^{15}-\frac{330365}{692467}a^{14}+\frac{318267}{692467}a^{13}+\frac{174147}{692467}a^{12}-\frac{7905}{692467}a^{11}+\frac{218538}{692467}a^{10}-\frac{41324}{692467}a^{9}-\frac{107622}{692467}a^{8}+\frac{193514}{692467}a^{7}+\frac{266310}{692467}a^{6}-\frac{79408}{692467}a^{5}-\frac{34126}{692467}a^{4}-\frac{121612}{692467}a^{3}-\frac{259334}{692467}a^{2}+\frac{4266}{692467}a-\frac{153947}{692467}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{176077}{692467}a^{15}-\frac{372704}{692467}a^{14}+\frac{914117}{692467}a^{13}-\frac{1234842}{692467}a^{12}+\frac{1354919}{692467}a^{11}-\frac{875764}{692467}a^{10}+\frac{237288}{692467}a^{9}+\frac{985495}{692467}a^{8}-\frac{1551558}{692467}a^{7}+\frac{1355432}{692467}a^{6}-\frac{1013686}{692467}a^{5}+\frac{424924}{692467}a^{4}+\frac{1465851}{692467}a^{3}-\frac{786271}{692467}a^{2}+\frac{510254}{692467}a+\frac{94796}{692467}$, $\frac{372282}{692467}a^{15}-\frac{571527}{692467}a^{14}+\frac{1201726}{692467}a^{13}-\frac{1121888}{692467}a^{12}+\frac{95540}{692467}a^{11}+\frac{1200820}{692467}a^{10}-\frac{2411897}{692467}a^{9}+\frac{3869551}{692467}a^{8}-\frac{3180199}{692467}a^{7}+\frac{1226563}{692467}a^{6}-\frac{752826}{692467}a^{5}+\frac{196517}{692467}a^{4}+\frac{3688678}{692467}a^{3}+\frac{446353}{692467}a^{2}-\frac{1749220}{692467}a-\frac{358266}{692467}$, $\frac{103175}{692467}a^{15}-\frac{105734}{692467}a^{14}+\frac{412585}{692467}a^{13}-\frac{516991}{692467}a^{12}+\frac{820218}{692467}a^{11}-\frac{1144771}{692467}a^{10}+\frac{1300553}{692467}a^{9}-\frac{883972}{692467}a^{8}+\frac{598406}{692467}a^{7}+\frac{136157}{692467}a^{6}-\frac{1035790}{692467}a^{5}+\frac{937112}{692467}a^{4}+\frac{183940}{692467}a^{3}+\frac{1524364}{692467}a^{2}+\frac{428005}{692467}a-\frac{366146}{692467}$, $\frac{422988}{692467}a^{15}-\frac{590020}{692467}a^{14}+\frac{1304793}{692467}a^{13}-\frac{1163290}{692467}a^{12}+\frac{203003}{692467}a^{11}+\frac{839247}{692467}a^{10}-\frac{1689032}{692467}a^{9}+\frac{2735912}{692467}a^{8}-\frac{1731771}{692467}a^{7}-\frac{442478}{692467}a^{6}+\frac{173198}{692467}a^{5}-\frac{413873}{692467}a^{4}+\frac{4341708}{692467}a^{3}+\frac{1297346}{692467}a^{2}-\frac{1487128}{692467}a-\frac{906824}{692467}$, $\frac{525964}{692467}a^{15}-\frac{1429951}{692467}a^{14}+\frac{3474143}{692467}a^{13}-\frac{5866986}{692467}a^{12}+\frac{7443585}{692467}a^{11}-\frac{7786302}{692467}a^{10}+\frac{6450063}{692467}a^{9}-\frac{3045028}{692467}a^{8}-\frac{172032}{692467}a^{7}+\frac{1402882}{692467}a^{6}-\frac{2372075}{692467}a^{5}+\frac{2467044}{692467}a^{4}+\frac{2412690}{692467}a^{3}-\frac{1660651}{692467}a^{2}+\frac{169344}{692467}a-\frac{413598}{692467}$, $\frac{53145}{692467}a^{15}+\frac{252860}{692467}a^{14}-\frac{591694}{692467}a^{13}+\frac{1605794}{692467}a^{12}-\frac{2553624}{692467}a^{11}+\frac{2915354}{692467}a^{10}-\frac{2428524}{692467}a^{9}+\frac{1591164}{692467}a^{8}+\frac{474113}{692467}a^{7}-\frac{1672997}{692467}a^{6}+\frac{1140672}{692467}a^{5}-\frac{747664}{692467}a^{4}+\frac{1109705}{692467}a^{3}+\frac{2635139}{692467}a^{2}-\frac{1105073}{692467}a-\frac{708177}{692467}$, $\frac{557797}{692467}a^{15}-\frac{1442667}{692467}a^{14}+\frac{3382877}{692467}a^{13}-\frac{5443870}{692467}a^{12}+\frac{6476774}{692467}a^{11}-\frac{6204696}{692467}a^{10}+\frac{4593070}{692467}a^{9}-\frac{1264504}{692467}a^{8}-\frac{1612236}{692467}a^{7}+\frac{1668098}{692467}a^{6}-\frac{1969922}{692467}a^{5}+\frac{1922342}{692467}a^{4}+\frac{3413358}{692467}a^{3}-\frac{2140766}{692467}a^{2}-\frac{447077}{692467}a-\frac{419490}{692467}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 10.0160978095 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 10.0160978095 \cdot 1}{2\cdot\sqrt{5190614520439741}}\cr\approx \mathstrut & 0.168848854797 \end{aligned}\]
Galois group
$C_2^8.S_8$ (as 16T1948):
A non-solvable group of order 10321920 |
The 185 conjugacy class representatives for $C_2^8.S_8$ |
Character table for $C_2^8.S_8$ |
Intermediate fields
8.0.1474013.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.5.0.1}{5} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.7.0.1}{7} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.7.0.1}{7} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.14.0.1}{14} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | $16$ | ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.7.0.1}{7} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(617\)
| $\Q_{617}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{617}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $4$ | $2$ | $2$ | $2$ | ||||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
\(2389\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $4$ | $4$ | $1$ | $3$ | ||||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |