Normalized defining polynomial
\( x^{16} - 4 x^{15} + 9 x^{14} - 25 x^{13} + 61 x^{12} - 119 x^{11} + 219 x^{10} - 410 x^{9} + 751 x^{8} - 1230 x^{7} + 1971 x^{6} - 3213 x^{5} + 4941 x^{4} - 6075 x^{3} + 6561 x^{2} - 8748 x + 6561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(516387172268851080441049=13^{12}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{10} - \frac{1}{9} a^{9} + \frac{2}{27} a^{8} + \frac{4}{27} a^{7} - \frac{8}{27} a^{6} + \frac{2}{9} a^{5} + \frac{4}{27} a^{4} - \frac{11}{27} a^{3} - \frac{4}{9} a^{2}$, $\frac{1}{81} a^{12} - \frac{1}{81} a^{11} - \frac{1}{27} a^{10} + \frac{2}{81} a^{9} + \frac{13}{81} a^{8} + \frac{10}{81} a^{7} + \frac{8}{27} a^{6} + \frac{31}{81} a^{5} - \frac{20}{81} a^{4} + \frac{8}{27} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{243} a^{13} - \frac{1}{243} a^{12} - \frac{1}{81} a^{11} + \frac{2}{243} a^{10} - \frac{14}{243} a^{9} - \frac{17}{243} a^{8} + \frac{8}{81} a^{7} + \frac{4}{243} a^{6} - \frac{74}{243} a^{5} - \frac{37}{81} a^{4} + \frac{7}{27} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{461457} a^{14} - \frac{58}{461457} a^{13} - \frac{1}{17091} a^{12} - \frac{2824}{461457} a^{11} + \frac{15910}{461457} a^{10} - \frac{13961}{461457} a^{9} - \frac{11198}{153819} a^{8} + \frac{16051}{461457} a^{7} + \frac{210865}{461457} a^{6} + \frac{71002}{153819} a^{5} - \frac{9451}{51273} a^{4} - \frac{238}{1899} a^{3} + \frac{2240}{5697} a^{2} + \frac{881}{1899} a + \frac{214}{633}$, $\frac{1}{84446631} a^{15} - \frac{73}{84446631} a^{14} + \frac{28766}{28148877} a^{13} - \frac{241693}{84446631} a^{12} + \frac{929911}{84446631} a^{11} - \frac{2747897}{84446631} a^{10} + \frac{3761657}{28148877} a^{9} - \frac{10367006}{84446631} a^{8} + \frac{10378519}{84446631} a^{7} + \frac{9402308}{28148877} a^{6} - \frac{1386854}{3127653} a^{5} + \frac{812309}{3127653} a^{4} + \frac{402878}{1042551} a^{3} + \frac{123877}{347517} a^{2} + \frac{12107}{38613} a + \frac{13489}{38613}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 245119.613331 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 4.4.8957.1, 4.0.116441.1, 8.8.718600843493.1, 8.0.4252075997.1, 8.0.13558506481.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $53$ | $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |