Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} + 2 x^{13} - x^{12} + 14 x^{11} - 24 x^{10} - 12 x^{9} + 481 x^{8} - 780 x^{7} + 648 x^{6} - 496 x^{5} + 368 x^{4} - 448 x^{3} + 512 x^{2} - 512 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51399544780206637056=2^{24}\cdot 3^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{48} a^{12} + \frac{1}{24} a^{11} - \frac{1}{24} a^{10} + \frac{5}{24} a^{9} - \frac{17}{48} a^{8} + \frac{1}{24} a^{7} - \frac{1}{12} a^{6} + \frac{5}{12} a^{5} + \frac{1}{48} a^{4} - \frac{1}{6} a^{3} - \frac{5}{12} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{288} a^{13} - \frac{1}{144} a^{12} + \frac{7}{144} a^{11} + \frac{1}{16} a^{10} + \frac{13}{96} a^{9} + \frac{59}{144} a^{8} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} + \frac{113}{288} a^{5} + \frac{11}{24} a^{4} - \frac{3}{8} a^{3} + \frac{5}{36} a^{2} - \frac{1}{18} a + \frac{4}{9}$, $\frac{1}{18697536} a^{14} - \frac{1381}{849888} a^{13} - \frac{191}{1038752} a^{12} + \frac{151861}{9348768} a^{11} - \frac{697171}{6232512} a^{10} + \frac{1349477}{9348768} a^{9} - \frac{821671}{2337192} a^{8} + \frac{249815}{1558128} a^{7} + \frac{1355969}{18697536} a^{6} - \frac{274451}{2337192} a^{5} + \frac{45861}{129844} a^{4} + \frac{79117}{292149} a^{3} - \frac{2477}{7491} a^{2} - \frac{20179}{44946} a - \frac{132280}{292149}$, $\frac{1}{1616551567488} a^{15} - \frac{1175}{808275783744} a^{14} + \frac{128987581}{808275783744} a^{13} - \frac{6755256811}{808275783744} a^{12} - \frac{84263252537}{1616551567488} a^{11} + \frac{36219229757}{808275783744} a^{10} - \frac{703169719}{50517236484} a^{9} + \frac{615831751}{1780343136} a^{8} - \frac{94185113839}{1616551567488} a^{7} - \frac{74284612343}{202068945936} a^{6} - \frac{80659167337}{202068945936} a^{5} - \frac{42784311929}{101034472968} a^{4} + \frac{4335657057}{11226052552} a^{3} - \frac{49720809}{215885626} a^{2} + \frac{14619097}{1403256569} a + \frac{5827502099}{12629309121}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1293814223}{124350120576} a^{15} - \frac{162934985}{15543765072} a^{14} + \frac{272723365}{20725020096} a^{13} + \frac{1789136257}{62175060288} a^{12} + \frac{2766616789}{124350120576} a^{11} + \frac{5437625981}{31087530144} a^{10} - \frac{17201065}{215885626} a^{9} - \frac{5174418331}{31087530144} a^{8} + \frac{593915295079}{124350120576} a^{7} - \frac{23653512543}{6908340032} a^{6} + \frac{144659771671}{31087530144} a^{5} - \frac{876967729}{353267388} a^{4} + \frac{20405190757}{7771882536} a^{3} - \frac{1238336515}{431771252} a^{2} + \frac{2654426255}{971485317} a - \frac{3253322179}{971485317} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7754.35289362 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4$ (as 16T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |