Normalized defining polynomial
\( x^{16} - 4 x^{15} + 16 x^{14} - 40 x^{13} + 75 x^{12} - 118 x^{11} + 166 x^{10} - 96 x^{9} - 32 x^{8} + 378 x^{7} - 850 x^{6} + 888 x^{5} - 82 x^{4} - 338 x^{3} + 974 x^{2} - 630 x + 133 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51399544780206637056=2^{24}\cdot 3^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{9} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{9} - \frac{2}{7} a^{8} + \frac{1}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{21} a^{12} + \frac{1}{21} a^{10} + \frac{10}{21} a^{9} - \frac{2}{7} a^{8} + \frac{1}{3} a^{6} + \frac{1}{7} a^{5} - \frac{2}{21} a^{4} - \frac{1}{21} a^{3} - \frac{2}{7} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{21} a^{13} + \frac{1}{21} a^{11} + \frac{1}{21} a^{10} + \frac{1}{7} a^{9} + \frac{4}{21} a^{7} - \frac{1}{7} a^{6} + \frac{10}{21} a^{5} - \frac{1}{21} a^{4} + \frac{2}{7} a^{3} - \frac{8}{21} a^{2} + \frac{1}{3} a$, $\frac{1}{1911} a^{14} - \frac{1}{273} a^{13} - \frac{3}{637} a^{12} + \frac{12}{637} a^{11} - \frac{74}{1911} a^{10} + \frac{905}{1911} a^{9} + \frac{673}{1911} a^{8} - \frac{61}{147} a^{7} - \frac{255}{637} a^{6} - \frac{62}{273} a^{5} - \frac{10}{637} a^{4} - \frac{898}{1911} a^{3} + \frac{87}{637} a^{2} - \frac{44}{273} a + \frac{38}{273}$, $\frac{1}{6012090480779019} a^{15} - \frac{5703188560}{95430007631413} a^{14} - \frac{56928377617316}{6012090480779019} a^{13} - \frac{30834002456966}{2004030160259673} a^{12} + \frac{17524518394416}{668010053419891} a^{11} + \frac{223491646739741}{6012090480779019} a^{10} + \frac{20344380994521}{51385388724607} a^{9} - \frac{730769050902425}{2004030160259673} a^{8} + \frac{53241779729647}{6012090480779019} a^{7} + \frac{319365537571468}{858870068682717} a^{6} + \frac{164776794564080}{668010053419891} a^{5} + \frac{895068805811177}{2004030160259673} a^{4} - \frac{277353937858219}{6012090480779019} a^{3} + \frac{52280787139676}{286290022894239} a^{2} - \frac{89691014804857}{858870068682717} a + \frac{17107774553060}{122695724097531}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{578677982}{63360528637} a^{15} + \frac{6760389338}{190081585911} a^{14} - \frac{27394244368}{190081585911} a^{13} + \frac{68298266545}{190081585911} a^{12} - \frac{131079577922}{190081585911} a^{11} + \frac{215042047762}{190081585911} a^{10} - \frac{324716234686}{190081585911} a^{9} + \frac{246559333526}{190081585911} a^{8} - \frac{16641398668}{27154512273} a^{7} - \frac{396570950432}{190081585911} a^{6} + \frac{373654627306}{63360528637} a^{5} - \frac{59008987591}{9051504091} a^{4} + \frac{39203334656}{63360528637} a^{3} + \frac{5447445352}{190081585911} a^{2} - \frac{137017984202}{27154512273} a + \frac{65469261755}{27154512273} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4124.94709562 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\wr C_2$ (as 16T39):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2\wr C_2$ |
| Character table for $C_2^2\wr C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |