Normalized defining polynomial
\( x^{16} - 8 x^{15} + 44 x^{14} - 168 x^{13} + 502 x^{12} - 1192 x^{11} + 2302 x^{10} - 3634 x^{9} + 4876 x^{8} - 5664 x^{7} + 5834 x^{6} - 5216 x^{5} + 3955 x^{4} - 2394 x^{3} + 1128 x^{2} - 366 x + 93 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51399544780206637056=2^{24}\cdot 3^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{1407} a^{12} - \frac{2}{469} a^{11} + \frac{305}{1407} a^{10} - \frac{3}{67} a^{9} - \frac{102}{469} a^{8} + \frac{43}{469} a^{7} - \frac{178}{1407} a^{6} + \frac{102}{469} a^{5} - \frac{17}{201} a^{4} + \frac{225}{469} a^{3} - \frac{202}{469} a^{2} - \frac{46}{469} a - \frac{177}{469}$, $\frac{1}{1407} a^{13} + \frac{269}{1407} a^{11} + \frac{120}{469} a^{10} - \frac{228}{469} a^{9} - \frac{100}{469} a^{8} + \frac{596}{1407} a^{7} + \frac{215}{469} a^{6} + \frac{310}{1407} a^{5} - \frac{13}{469} a^{4} + \frac{30}{67} a^{3} + \frac{149}{469} a^{2} + \frac{16}{469} a - \frac{124}{469}$, $\frac{1}{66129} a^{14} - \frac{1}{9447} a^{13} + \frac{5}{66129} a^{12} + \frac{61}{66129} a^{11} - \frac{5396}{22043} a^{10} + \frac{4695}{22043} a^{9} - \frac{29080}{66129} a^{8} + \frac{4681}{9447} a^{7} + \frac{27310}{66129} a^{6} + \frac{7055}{66129} a^{5} - \frac{1141}{3149} a^{4} + \frac{8222}{22043} a^{3} - \frac{2572}{22043} a^{2} - \frac{9666}{22043} a + \frac{7731}{22043}$, $\frac{1}{103756401} a^{15} + \frac{37}{4940781} a^{14} + \frac{15338}{103756401} a^{13} - \frac{2963}{14822343} a^{12} + \frac{656306}{4940781} a^{11} - \frac{4786477}{103756401} a^{10} + \frac{40255268}{103756401} a^{9} - \frac{1333052}{4940781} a^{8} + \frac{35465848}{103756401} a^{7} + \frac{43149767}{103756401} a^{6} + \frac{14294605}{34585467} a^{5} - \frac{335285}{14822343} a^{4} - \frac{7729891}{34585467} a^{3} - \frac{13724555}{34585467} a^{2} - \frac{1592495}{11528489} a + \frac{10786813}{34585467}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{260}{9447} a^{14} + \frac{1820}{9447} a^{13} - \frac{3128}{3149} a^{12} + \frac{32644}{9447} a^{11} - \frac{89458}{9447} a^{10} + \frac{63810}{3149} a^{9} - \frac{328855}{9447} a^{8} + \frac{451564}{9447} a^{7} - \frac{180458}{3149} a^{6} + \frac{566648}{9447} a^{5} - \frac{526343}{9447} a^{4} + \frac{130782}{3149} a^{3} - \frac{78956}{3149} a^{2} + \frac{32030}{3149} a - \frac{9223}{3149} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8148.71784457 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\wr C_2$ (as 16T39):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2\wr C_2$ |
| Character table for $C_2^2\wr C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |