Normalized defining polynomial
\( x^{16} - 8 x^{15} + 40 x^{14} - 140 x^{13} + 406 x^{12} - 980 x^{11} + 1972 x^{10} - 3260 x^{9} + 4411 x^{8} - 4860 x^{7} + 4356 x^{6} - 3156 x^{5} + 1866 x^{4} - 900 x^{3} + 324 x^{2} - 72 x + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51399544780206637056=2^{24}\cdot 3^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{12} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{12} a^{9} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{1}{4} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{11} - \frac{5}{12} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{12} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4716} a^{14} - \frac{7}{4716} a^{13} + \frac{13}{786} a^{12} + \frac{4}{1179} a^{11} + \frac{1}{2358} a^{10} + \frac{15}{524} a^{9} - \frac{161}{4716} a^{8} + \frac{467}{1179} a^{7} + \frac{121}{262} a^{6} + \frac{3}{524} a^{5} + \frac{111}{524} a^{4} - \frac{157}{786} a^{3} + \frac{207}{524} a^{2} + \frac{61}{131} a - \frac{99}{524}$, $\frac{1}{1702476} a^{15} + \frac{173}{1702476} a^{14} - \frac{2533}{189164} a^{13} - \frac{58649}{1702476} a^{12} + \frac{221}{6498} a^{11} - \frac{5747}{283746} a^{10} + \frac{36715}{1702476} a^{9} + \frac{20635}{851238} a^{8} - \frac{10247}{141873} a^{7} - \frac{23202}{47291} a^{6} - \frac{278911}{567492} a^{5} - \frac{6481}{94582} a^{4} + \frac{76997}{189164} a^{3} - \frac{68999}{189164} a^{2} - \frac{2521}{94582} a + \frac{14799}{189164}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{101}{1572} a^{14} - \frac{707}{1572} a^{13} + \frac{3293}{1572} a^{12} - \frac{10567}{1572} a^{11} + \frac{29153}{1572} a^{10} - \frac{21917}{524} a^{9} + \frac{40779}{524} a^{8} - \frac{60731}{524} a^{7} + \frac{218275}{1572} a^{6} - \frac{207397}{1572} a^{5} + \frac{52497}{524} a^{4} - \frac{31059}{524} a^{3} + \frac{3923}{131} a^{2} - \frac{2989}{262} a + \frac{328}{131} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5400.30534286 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\wr C_2$ (as 16T39):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2\wr C_2$ |
| Character table for $C_2^2\wr C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.15 | $x^{8} + 2 x^{7} + 2 x^{4} + 12$ | $4$ | $2$ | $12$ | $C_2^2:C_4$ | $[2, 2]^{4}$ |
| 2.8.12.15 | $x^{8} + 2 x^{7} + 2 x^{4} + 12$ | $4$ | $2$ | $12$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |