Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 50 x^{13} + 59 x^{12} - 56 x^{11} + 67 x^{10} - 148 x^{9} + 196 x^{8} - 132 x^{7} + 235 x^{6} + 115 x^{4} - 20 x^{3} + 7 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51399544780206637056=2^{24}\cdot 3^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{34} a^{12} - \frac{3}{17} a^{11} - \frac{7}{34} a^{10} + \frac{5}{17} a^{9} + \frac{13}{34} a^{8} + \frac{6}{17} a^{7} - \frac{5}{34} a^{6} + \frac{1}{17} a^{5} + \frac{1}{17} a^{4} - \frac{6}{17} a^{3} - \frac{1}{17} a^{2} + \frac{5}{17} a - \frac{1}{34}$, $\frac{1}{34} a^{13} - \frac{9}{34} a^{11} + \frac{1}{17} a^{10} + \frac{5}{34} a^{9} - \frac{6}{17} a^{8} - \frac{1}{34} a^{7} + \frac{3}{17} a^{6} + \frac{7}{17} a^{5} - \frac{3}{17} a^{3} - \frac{1}{17} a^{2} - \frac{9}{34} a - \frac{3}{17}$, $\frac{1}{34} a^{14} + \frac{8}{17} a^{11} + \frac{5}{17} a^{10} + \frac{5}{17} a^{9} + \frac{7}{17} a^{8} + \frac{6}{17} a^{7} + \frac{3}{34} a^{6} - \frac{8}{17} a^{5} + \frac{6}{17} a^{4} - \frac{4}{17} a^{3} + \frac{7}{34} a^{2} + \frac{8}{17} a - \frac{9}{34}$, $\frac{1}{1470780931562} a^{15} - \frac{7206039503}{1470780931562} a^{14} - \frac{12293952497}{1470780931562} a^{13} - \frac{15694774821}{1470780931562} a^{12} + \frac{648367908517}{1470780931562} a^{11} + \frac{34331913375}{1470780931562} a^{10} - \frac{154353741407}{1470780931562} a^{9} + \frac{328388364389}{1470780931562} a^{8} - \frac{205589700363}{735390465781} a^{7} + \frac{237310935392}{735390465781} a^{6} - \frac{152778918549}{735390465781} a^{5} + \frac{208716996403}{735390465781} a^{4} - \frac{228584054923}{1470780931562} a^{3} - \frac{364483963899}{1470780931562} a^{2} - \frac{54424213360}{735390465781} a - \frac{113507479377}{735390465781}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{20195477}{47743327} a^{15} + \frac{319653395}{95486654} a^{14} - \frac{554497825}{47743327} a^{13} + \frac{984056721}{47743327} a^{12} - \frac{1182305811}{47743327} a^{11} + \frac{1157190632}{47743327} a^{10} - \frac{1388586573}{47743327} a^{9} + \frac{2977715798}{47743327} a^{8} - \frac{3832646183}{47743327} a^{7} + \frac{5376805601}{95486654} a^{6} - \frac{4980622584}{47743327} a^{5} - \frac{192504334}{47743327} a^{4} - \frac{2837390938}{47743327} a^{3} + \frac{29359445}{95486654} a^{2} - \frac{303094367}{47743327} a + \frac{14470383}{5616862} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3374.2130113 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), 4.2.84672.1 x2, 4.0.12096.2 x2, 4.0.3528.1, \(\Q(\sqrt{-3}, \sqrt{-7})\), 4.0.392.1, 8.0.12446784.1, 8.0.7169347584.6, 8.0.112021056.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |