Normalized defining polynomial
\( x^{16} - 4 x^{13} + 7 x^{12} - 8 x^{11} + 8 x^{10} - 20 x^{9} + 49 x^{8} - 36 x^{7} - 28 x^{6} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(513114342400000000\) \(\medspace = 2^{16}\cdot 5^{8}\cdot 11^{4}\cdot 37^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.79\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{15/8}5^{1/2}11^{1/2}37^{1/2}\approx 165.46778321069314$ | ||
Ramified primes: | \(2\), \(5\), \(11\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{4}$, $\frac{1}{51822}a^{15}-\frac{10837}{51822}a^{14}+\frac{11917}{51822}a^{13}-\frac{4109}{51822}a^{12}-\frac{3923}{17274}a^{11}+\frac{6703}{51822}a^{10}-\frac{5935}{25911}a^{9}-\frac{4315}{17274}a^{8}+\frac{1430}{25911}a^{7}+\frac{21611}{51822}a^{6}-\frac{4939}{17274}a^{5}+\frac{703}{25911}a^{4}-\frac{383}{17274}a^{3}-\frac{5749}{25911}a^{2}-\frac{725}{17274}a+\frac{8690}{25911}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{258353}{51822}a^{15}-\frac{87911}{51822}a^{14}-\frac{4141}{51822}a^{13}-\frac{1035247}{51822}a^{12}+\frac{357727}{8637}a^{11}-\frac{1332224}{25911}a^{10}+\frac{2741039}{51822}a^{9}-\frac{1933019}{17274}a^{8}+\frac{14288465}{51822}a^{7}-\frac{13405673}{51822}a^{6}-\frac{734644}{8637}a^{5}+\frac{7111574}{25911}a^{4}-\frac{524402}{8637}a^{3}-\frac{2514422}{25911}a^{2}+\frac{393359}{17274}a+\frac{861191}{51822}$, $\frac{10177}{25911}a^{15}-\frac{10933}{25911}a^{14}+\frac{15829}{25911}a^{13}-\frac{48761}{25911}a^{12}+\frac{39028}{8637}a^{11}-\frac{454951}{51822}a^{10}+\frac{307024}{25911}a^{9}-\frac{326063}{17274}a^{8}+\frac{940963}{25911}a^{7}-\frac{2663675}{51822}a^{6}+\frac{365891}{8637}a^{5}-\frac{583973}{51822}a^{4}-\frac{123422}{8637}a^{3}+\frac{697457}{51822}a^{2}-\frac{10964}{8637}a-\frac{69959}{25911}$, $\frac{87911}{51822}a^{15}+\frac{4141}{51822}a^{14}+\frac{1835}{51822}a^{13}-\frac{337891}{51822}a^{12}+\frac{99604}{8637}a^{11}-\frac{674215}{51822}a^{10}+\frac{631997}{51822}a^{9}-\frac{271528}{8637}a^{8}+\frac{4104965}{51822}a^{7}-\frac{1413010}{25911}a^{6}-\frac{475936}{8637}a^{5}+\frac{4438177}{51822}a^{4}-\frac{23036}{8637}a^{3}-\frac{1696783}{51822}a^{2}+\frac{57407}{17274}a+\frac{258353}{51822}$, $\frac{87911}{51822}a^{15}+\frac{4141}{51822}a^{14}+\frac{1835}{51822}a^{13}-\frac{337891}{51822}a^{12}+\frac{99604}{8637}a^{11}-\frac{674215}{51822}a^{10}+\frac{631997}{51822}a^{9}-\frac{271528}{8637}a^{8}+\frac{4104965}{51822}a^{7}-\frac{1413010}{25911}a^{6}-\frac{475936}{8637}a^{5}+\frac{4438177}{51822}a^{4}-\frac{23036}{8637}a^{3}-\frac{1696783}{51822}a^{2}+\frac{57407}{17274}a+\frac{206531}{51822}$, $\frac{43679}{17274}a^{15}-\frac{24449}{17274}a^{14}+\frac{22475}{17274}a^{13}-\frac{90764}{8637}a^{12}+\frac{137797}{5758}a^{11}-\frac{304958}{8637}a^{10}+\frac{367444}{8637}a^{9}-\frac{222258}{2879}a^{8}+\frac{1466476}{8637}a^{7}-\frac{1683964}{8637}a^{6}+\frac{332611}{5758}a^{5}+\frac{1238695}{17274}a^{4}-\frac{243903}{5758}a^{3}-\frac{119351}{8637}a^{2}+\frac{47789}{5758}a+\frac{17545}{8637}$, $\frac{818297}{51822}a^{15}-\frac{220396}{25911}a^{14}+\frac{195965}{51822}a^{13}-\frac{3383977}{51822}a^{12}+\frac{2508485}{17274}a^{11}-\frac{5222555}{25911}a^{10}+\frac{5943298}{25911}a^{9}-\frac{3730747}{8637}a^{8}+\frac{25857217}{25911}a^{7}-\frac{28172818}{25911}a^{6}+\frac{1773571}{17274}a^{5}+\frac{17450783}{25911}a^{4}-\frac{4825015}{17274}a^{3}-\frac{9537745}{51822}a^{2}+\frac{1184837}{17274}a+\frac{789331}{25911}$, $\frac{63263}{51822}a^{15}-\frac{27893}{51822}a^{14}+\frac{38224}{25911}a^{13}-\frac{267625}{51822}a^{12}+\frac{96730}{8637}a^{11}-\frac{509033}{25911}a^{10}+\frac{658171}{25911}a^{9}-\frac{776153}{17274}a^{8}+\frac{2290957}{25911}a^{7}-\frac{5588087}{51822}a^{6}+\frac{1188061}{17274}a^{5}-\frac{274408}{25911}a^{4}-\frac{165575}{8637}a^{3}+\frac{480118}{25911}a^{2}-\frac{14558}{8637}a-\frac{229633}{51822}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 136.008808013 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 136.008808013 \cdot 1}{2\cdot\sqrt{513114342400000000}}\cr\approx \mathstrut & 0.230605100432 \end{aligned}\]
Galois group
$C_2^7.C_2\wr D_4$ (as 16T1772):
A solvable group of order 16384 |
The 148 conjugacy class representatives for $C_2^7.C_2\wr D_4$ |
Character table for $C_2^7.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.275.1, 8.2.19360000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.8.8 | $x^{8} - 6 x^{7} + 40 x^{6} - 52 x^{5} + 192 x^{4} + 328 x^{3} + 1376 x^{2} + 1264 x + 1328$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
2.8.8.8 | $x^{8} - 6 x^{7} + 40 x^{6} - 52 x^{5} + 192 x^{4} + 328 x^{3} + 1376 x^{2} + 1264 x + 1328$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(11\) | 11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
11.4.2.1 | $x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.2.1 | $x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(37\) | 37.4.0.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
37.4.2.2 | $x^{4} - 1221 x^{2} + 2738$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
37.4.0.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
37.4.0.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |