Properties

Label 16.0.51237550166...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{8}\cdot 5^{8}\cdot 13^{6}\cdot 101^{6}$
Root discriminant $46.70$
Ramified primes $2, 5, 13, 101$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group 16T1191

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![445, -2645, 13479, 59277, 29324, -13463, 46778, -3183, -5496, 4047, -421, -152, 110, -37, 20, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 20*x^14 - 37*x^13 + 110*x^12 - 152*x^11 - 421*x^10 + 4047*x^9 - 5496*x^8 - 3183*x^7 + 46778*x^6 - 13463*x^5 + 29324*x^4 + 59277*x^3 + 13479*x^2 - 2645*x + 445)
 
gp: K = bnfinit(x^16 - 4*x^15 + 20*x^14 - 37*x^13 + 110*x^12 - 152*x^11 - 421*x^10 + 4047*x^9 - 5496*x^8 - 3183*x^7 + 46778*x^6 - 13463*x^5 + 29324*x^4 + 59277*x^3 + 13479*x^2 - 2645*x + 445, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 20 x^{14} - 37 x^{13} + 110 x^{12} - 152 x^{11} - 421 x^{10} + 4047 x^{9} - 5496 x^{8} - 3183 x^{7} + 46778 x^{6} - 13463 x^{5} + 29324 x^{4} + 59277 x^{3} + 13479 x^{2} - 2645 x + 445 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(512375501660226220900000000=2^{8}\cdot 5^{8}\cdot 13^{6}\cdot 101^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $46.70$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{14} + \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{3}{8} a^{5} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{59702855000901693673703814898569239440} a^{15} + \frac{519987053723845172165814331007638079}{11940571000180338734740762979713847888} a^{14} + \frac{24906377665211965214336024222122193}{702386529422372866749456645865520464} a^{13} - \frac{712640474048147140462154367452391001}{29851427500450846836851907449284619720} a^{12} + \frac{1514205066054035135206278178603154253}{14925713750225423418425953724642309860} a^{11} + \frac{880053202006801627430510533547854806}{3731428437556355854606488431160577465} a^{10} - \frac{66945953247171348352358479037246191}{1270273510657482844121357763799345520} a^{9} - \frac{872756322761590357273959634330238119}{14925713750225423418425953724642309860} a^{8} + \frac{396183444915287801001482467341127129}{2985142750045084683685190744928461972} a^{7} - \frac{14251254013196474203403741703104840403}{59702855000901693673703814898569239440} a^{6} - \frac{14769860222370073645422697514885162179}{59702855000901693673703814898569239440} a^{5} - \frac{720831927536197316595998954931648214}{3731428437556355854606488431160577465} a^{4} + \frac{4400462143589553722471139239686148597}{14925713750225423418425953724642309860} a^{3} + \frac{11846404249960421706161711107425537489}{59702855000901693673703814898569239440} a^{2} - \frac{2569536543751713024829824758365791373}{5970285500090169367370381489856923944} a + \frac{4188343327001579891066204795768174181}{11940571000180338734740762979713847888}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2341997.71665 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1191:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 55 conjugacy class representatives for t16n1191 are not computed
Character table for t16n1191 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2525.1, 8.0.1077480625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.8.0.1$x^{8} + 4 x^{2} - x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
13.8.6.3$x^{8} + 65 x^{4} + 1352$$4$$2$$6$$C_8$$[\ ]_{4}^{2}$
$101$101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.8.4.1$x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$