Normalized defining polynomial
\( x^{16} + 2 x^{14} + 53 x^{12} + 354 x^{10} + 1160 x^{8} + 1833 x^{6} + 2729 x^{4} + 2678 x^{2} + 8281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50787142148496295121281=13^{8}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{42} a^{9} + \frac{5}{42} a^{7} - \frac{10}{21} a^{5} - \frac{1}{2} a^{4} - \frac{1}{42} a^{3} + \frac{3}{14} a$, $\frac{1}{42} a^{10} - \frac{1}{21} a^{8} + \frac{1}{42} a^{6} - \frac{1}{2} a^{5} - \frac{1}{42} a^{4} - \frac{1}{2} a^{3} - \frac{2}{7} a^{2} + \frac{1}{6}$, $\frac{1}{42} a^{11} - \frac{1}{14} a^{7} - \frac{1}{6} a^{6} + \frac{5}{14} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{14} a - \frac{1}{3}$, $\frac{1}{4158} a^{12} - \frac{47}{4158} a^{10} + \frac{2}{99} a^{8} - \frac{1}{6} a^{7} - \frac{235}{4158} a^{6} - \frac{1}{3} a^{5} - \frac{85}{462} a^{4} + \frac{1}{3} a^{3} + \frac{410}{2079} a^{2} - \frac{1}{3} a + \frac{50}{297}$, $\frac{1}{4158} a^{13} - \frac{47}{4158} a^{11} - \frac{5}{1386} a^{9} + \frac{328}{2079} a^{7} - \frac{1}{6} a^{6} - \frac{19}{462} a^{5} + \frac{1}{6} a^{4} + \frac{113}{2079} a^{3} - \frac{1}{6} a^{2} - \frac{1577}{4158} a + \frac{1}{6}$, $\frac{1}{1318539222} a^{14} + \frac{40435}{439513074} a^{12} - \frac{10930165}{1318539222} a^{10} + \frac{40797700}{659269611} a^{8} - \frac{1}{6} a^{7} - \frac{133260683}{1318539222} a^{6} + \frac{1}{6} a^{5} + \frac{16947377}{50713047} a^{4} - \frac{1}{6} a^{3} + \frac{136414009}{439513074} a^{2} + \frac{1}{6} a - \frac{86362}{658611}$, $\frac{1}{1318539222} a^{15} + \frac{40435}{439513074} a^{13} - \frac{10930165}{1318539222} a^{11} - \frac{12585973}{1318539222} a^{9} - \frac{82327237}{659269611} a^{7} + \frac{21777191}{50713047} a^{5} + \frac{94555621}{439513074} a^{3} - \frac{989531}{9220554} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 82825.5955779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{689}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{13}, \sqrt{53})\), 4.4.8957.1 x2, 4.4.36517.1 x2, 8.8.225360027841.1, 8.0.4252075997.1 x4, 8.0.17335386757.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |