Properties

Label 16.0.50662549353...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{10}\cdot 29^{4}\cdot 1621^{5}$
Root discriminant $127.80$
Ramified primes $2, 5, 29, 1621$
Class number $2327040$ (GRH)
Class group $[2, 4, 290880]$ (GRH)
Galois group 16T1574

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![106485151525, 0, 71931672375, 0, 14648741955, 0, 1378919860, 0, 69707006, 0, 2004498, 0, 32768, 0, 283, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 283*x^14 + 32768*x^12 + 2004498*x^10 + 69707006*x^8 + 1378919860*x^6 + 14648741955*x^4 + 71931672375*x^2 + 106485151525)
 
gp: K = bnfinit(x^16 + 283*x^14 + 32768*x^12 + 2004498*x^10 + 69707006*x^8 + 1378919860*x^6 + 14648741955*x^4 + 71931672375*x^2 + 106485151525, 1)
 

Normalized defining polynomial

\( x^{16} + 283 x^{14} + 32768 x^{12} + 2004498 x^{10} + 69707006 x^{8} + 1378919860 x^{6} + 14648741955 x^{4} + 71931672375 x^{2} + 106485151525 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5066254935343120593523840000000000=2^{16}\cdot 5^{10}\cdot 29^{4}\cdot 1621^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $127.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 1621$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{8105} a^{12} + \frac{283}{8105} a^{10} + \frac{348}{8105} a^{8} + \frac{2563}{8105} a^{6} + \frac{4006}{8105} a^{4}$, $\frac{1}{8105} a^{13} + \frac{283}{8105} a^{11} + \frac{348}{8105} a^{9} + \frac{2563}{8105} a^{7} + \frac{4006}{8105} a^{5}$, $\frac{1}{1916820415991557667133723507965} a^{14} - \frac{86125285874256002009425858}{1916820415991557667133723507965} a^{12} - \frac{67735681508528368884660075882}{383364083198311533426744701593} a^{10} + \frac{48114112334110650426696735884}{383364083198311533426744701593} a^{8} - \frac{713158340720356621081249324227}{1916820415991557667133723507965} a^{6} + \frac{507437445178149713241239234}{1182492545337173144437830665} a^{4} + \frac{76593533567575815426524711}{236498509067434628887566133} a^{2} - \frac{24551497817666884347039}{145896674316739437931873}$, $\frac{1}{1916820415991557667133723507965} a^{15} - \frac{86125285874256002009425858}{1916820415991557667133723507965} a^{13} - \frac{67735681508528368884660075882}{383364083198311533426744701593} a^{11} + \frac{48114112334110650426696735884}{383364083198311533426744701593} a^{9} - \frac{713158340720356621081249324227}{1916820415991557667133723507965} a^{7} + \frac{507437445178149713241239234}{1182492545337173144437830665} a^{5} + \frac{76593533567575815426524711}{236498509067434628887566133} a^{3} - \frac{24551497817666884347039}{145896674316739437931873} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{290880}$, which has order $2327040$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5728.02182166 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1574:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 88 conjugacy class representatives for t16n1574 are not computed
Character table for t16n1574 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.852038125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ $16$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ $16$ $16$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.8.0.1$x^{8} + x^{2} - 3 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
1621Data not computed