Normalized defining polynomial
\( x^{16} - 4 x^{15} + 76 x^{14} - 112 x^{13} + 1624 x^{12} - 364 x^{11} + 19600 x^{10} + 920 x^{9} + 136663 x^{8} + 183684 x^{7} + 338520 x^{6} + 1297464 x^{5} + 2514456 x^{4} + 868392 x^{3} + 12532680 x^{2} - 3082824 x + 13379913 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5054886175427630513006837760000=2^{40}\cdot 3^{12}\cdot 5^{4}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{21} a^{8} - \frac{2}{21} a^{7} - \frac{2}{7} a^{6} - \frac{5}{21} a^{5} + \frac{1}{3} a^{4} - \frac{3}{7} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{21} a^{9} - \frac{10}{21} a^{7} + \frac{4}{21} a^{6} - \frac{1}{7} a^{5} + \frac{5}{21} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{21} a^{10} + \frac{5}{21} a^{7} - \frac{1}{7} a^{5} + \frac{4}{21} a^{4} - \frac{3}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{21} a^{11} + \frac{10}{21} a^{7} + \frac{2}{7} a^{6} + \frac{8}{21} a^{5} - \frac{2}{21} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7}$, $\frac{1}{21} a^{12} + \frac{5}{21} a^{7} + \frac{5}{21} a^{6} + \frac{2}{7} a^{5} - \frac{10}{21} a^{4} + \frac{3}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{21} a^{13} - \frac{2}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{5}{21} a^{4} - \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{987} a^{14} + \frac{1}{141} a^{13} + \frac{4}{329} a^{12} + \frac{20}{987} a^{11} + \frac{11}{987} a^{10} - \frac{8}{987} a^{9} + \frac{1}{141} a^{8} - \frac{75}{329} a^{7} + \frac{379}{987} a^{6} - \frac{96}{329} a^{5} + \frac{383}{987} a^{4} + \frac{145}{329} a^{3} + \frac{92}{329} a^{2} + \frac{9}{47} a - \frac{1}{7}$, $\frac{1}{276493566441021279381096765673824254251979691} a^{15} - \frac{94498519291190453697391391354562376981312}{276493566441021279381096765673824254251979691} a^{14} - \frac{484011662469906182063913045277328110411931}{92164522147007093127032255224608084750659897} a^{13} + \frac{2306027839002727350505993626058189869149864}{276493566441021279381096765673824254251979691} a^{12} - \frac{126590386052102056343769625641827049974969}{13166360306715299018147465032086869250094271} a^{11} - \frac{2596526188332456800975433306060691987319759}{276493566441021279381096765673824254251979691} a^{10} + \frac{137396321061985369258504421026758444261475}{276493566441021279381096765673824254251979691} a^{9} + \frac{368580723491211110182707982248596568591172}{39499080920145897054442395096260607750282813} a^{8} + \frac{24218403762332260777864674452999154888794810}{92164522147007093127032255224608084750659897} a^{7} - \frac{28341079969420923915306280740455080945486423}{92164522147007093127032255224608084750659897} a^{6} + \frac{16238880512696975232327118070657452670649154}{92164522147007093127032255224608084750659897} a^{5} + \frac{71480618566516074144588715187869334179757222}{276493566441021279381096765673824254251979691} a^{4} - \frac{6054630000555733653033766419032999107908696}{92164522147007093127032255224608084750659897} a^{3} - \frac{35804973075271458020164305758039543124568440}{92164522147007093127032255224608084750659897} a^{2} + \frac{2383227455656242185277599992902744512407341}{13166360306715299018147465032086869250094271} a + \frac{1148260015907664754207412744370078391095}{1960947279723555172915579898395916696822551}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{22}\times C_{44}$, which has order $15488$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32719.5368105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^3$ (as 16T20):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $(C_2 \times Q_8):C_2$ |
| Character table for $(C_2 \times Q_8):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $7$ | 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |