Normalized defining polynomial
\( x^{16} + 68 x^{14} + 1802 x^{12} + 24072 x^{10} + 172720 x^{8} + 643824 x^{6} + 1067464 x^{4} + 493408 x^{2} + 45968 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50356278859985642512053476261888=2^{44}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(272=2^{4}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{272}(1,·)$, $\chi_{272}(261,·)$, $\chi_{272}(225,·)$, $\chi_{272}(9,·)$, $\chi_{272}(141,·)$, $\chi_{272}(269,·)$, $\chi_{272}(81,·)$, $\chi_{272}(121,·)$, $\chi_{272}(25,·)$, $\chi_{272}(29,·)$, $\chi_{272}(197,·)$, $\chi_{272}(33,·)$, $\chi_{272}(173,·)$, $\chi_{272}(245,·)$, $\chi_{272}(185,·)$, $\chi_{272}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{52} a^{11} + \frac{3}{26} a^{9} + \frac{5}{26} a^{7} + \frac{2}{13} a^{5} - \frac{1}{13} a^{3} - \frac{6}{13} a$, $\frac{1}{416} a^{12} + \frac{1}{13} a^{10} - \frac{1}{26} a^{8} + \frac{1}{52} a^{6} + \frac{3}{26} a^{4} - \frac{4}{13} a^{2} + \frac{1}{4}$, $\frac{1}{416} a^{13} - \frac{1}{4} a^{7} + \frac{5}{52} a$, $\frac{1}{1105234286624} a^{14} + \frac{565829253}{1105234286624} a^{12} - \frac{3929348577}{34538571457} a^{10} - \frac{6832590249}{138154285828} a^{8} - \frac{12026022487}{138154285828} a^{6} + \frac{13175874185}{69077142914} a^{4} - \frac{20620648543}{138154285828} a^{2} - \frac{1021958411}{10627252756}$, $\frac{1}{1105234286624} a^{15} + \frac{565829253}{1105234286624} a^{13} + \frac{111742413}{69077142914} a^{11} - \frac{3700757454}{34538571457} a^{9} + \frac{9228483025}{138154285828} a^{7} + \frac{7862247807}{69077142914} a^{5} + \frac{53770120749}{138154285828} a^{3} + \frac{18596298925}{138154285828} a$
Class group and class number
$C_{2}\times C_{2308}$, which has order $4616$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308865.41107064753 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.1680747204608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.32 | $x^{8} + 8 x^{7} + 2 x^{4} + 16 x^{3} + 16 x + 20$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ |
| 2.8.22.32 | $x^{8} + 8 x^{7} + 2 x^{4} + 16 x^{3} + 16 x + 20$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ | |
| 17 | Data not computed | ||||||