Normalized defining polynomial
\( x^{16} - 7 x^{15} + 169 x^{14} - 721 x^{13} + 10352 x^{12} - 32647 x^{11} + 314218 x^{10} - 802681 x^{9} + 5362186 x^{8} - 11468099 x^{7} + 53717753 x^{6} - 95434883 x^{5} + 311549332 x^{4} - 428392404 x^{3} + 959344879 x^{2} - 794857148 x + 1187058641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50345559205004654867065673828125=5^{12}\cdot 101^{6}\cdot 181^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{9} - \frac{1}{5} a^{6} - \frac{2}{5} a^{3} + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{10} - \frac{1}{5} a^{7} - \frac{2}{5} a^{4} + \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{11} - \frac{1}{5} a^{8} - \frac{2}{5} a^{5} + \frac{1}{5} a^{2}$, $\frac{1}{538820043693974274098984830632498195682045240320268399195} a^{15} + \frac{3733686060564122586940948531020099863833901460798657493}{107764008738794854819796966126499639136409048064053679839} a^{14} + \frac{8900348904666767013698551990929263931905560209547180358}{107764008738794854819796966126499639136409048064053679839} a^{13} + \frac{5106006542706654788886277132141892029328282666801045417}{107764008738794854819796966126499639136409048064053679839} a^{12} - \frac{19666729329717509605168851870809323252263861333728835062}{107764008738794854819796966126499639136409048064053679839} a^{11} - \frac{31594617661381115023644581110055210742847568338331723244}{107764008738794854819796966126499639136409048064053679839} a^{10} + \frac{26763177884188414247812912728745162387057159884087055001}{107764008738794854819796966126499639136409048064053679839} a^{9} + \frac{14044751410441201524958565635130584066456185370427217572}{107764008738794854819796966126499639136409048064053679839} a^{8} - \frac{32599559548118307676458345641894460570102364380302731212}{107764008738794854819796966126499639136409048064053679839} a^{7} - \frac{15927813857264484825148784367866951257224208016385263808}{107764008738794854819796966126499639136409048064053679839} a^{6} + \frac{25065093594773003225420907687254962289458542303913529519}{107764008738794854819796966126499639136409048064053679839} a^{5} - \frac{21693179982875796384267841414899874487599963704359053480}{107764008738794854819796966126499639136409048064053679839} a^{4} - \frac{23483968505074497626122266318461099145875611842635941923}{107764008738794854819796966126499639136409048064053679839} a^{3} + \frac{12130904811045582849081867832005000620327304643373127611}{107764008738794854819796966126499639136409048064053679839} a^{2} + \frac{21088101576983393240456621965967363690989002660153618176}{107764008738794854819796966126499639136409048064053679839} a - \frac{195125038696807852567886749382930548655589534375986106822}{538820043693974274098984830632498195682045240320268399195}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{10974}$, which has order $175584$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6824.94222592 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n994 |
| Character table for t16n994 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.8.1153988125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||
| 181 | Data not computed | ||||||