Normalized defining polynomial
\( x^{16} + 148 x^{14} + 10486 x^{12} - 24 x^{11} + 460196 x^{10} + 3864 x^{9} + 13557351 x^{8} + 224640 x^{7} + 272216812 x^{6} + 2718048 x^{5} + 3610023514 x^{4} - 36903144 x^{3} + 28731561716 x^{2} - 747884040 x + 104415192286 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5032238723456334453905817600000000=2^{48}\cdot 3^{8}\cdot 5^{8}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4080=2^{4}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(3911,·)$, $\chi_{4080}(2891,·)$, $\chi_{4080}(1871,·)$, $\chi_{4080}(851,·)$, $\chi_{4080}(2041,·)$, $\chi_{4080}(3739,·)$, $\chi_{4080}(2719,·)$, $\chi_{4080}(1699,·)$, $\chi_{4080}(679,·)$, $\chi_{4080}(1021,·)$, $\chi_{4080}(3569,·)$, $\chi_{4080}(3061,·)$, $\chi_{4080}(1529,·)$, $\chi_{4080}(509,·)$, $\chi_{4080}(2549,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{20600506409} a^{14} - \frac{6746824366}{20600506409} a^{13} - \frac{4038700931}{20600506409} a^{12} + \frac{8014398951}{20600506409} a^{11} - \frac{6058036679}{20600506409} a^{10} + \frac{6375823592}{20600506409} a^{9} - \frac{300649151}{2942929487} a^{8} + \frac{2626363545}{20600506409} a^{7} - \frac{3792147596}{20600506409} a^{6} + \frac{930534973}{20600506409} a^{5} + \frac{8264567614}{20600506409} a^{4} + \frac{1185825177}{20600506409} a^{3} + \frac{9903741304}{20600506409} a^{2} + \frac{3765399070}{20600506409} a - \frac{3030760595}{20600506409}$, $\frac{1}{3026045400324734961865019277486009511598483609} a^{15} + \frac{323042268215821886433476260722431}{3026045400324734961865019277486009511598483609} a^{14} - \frac{736751227040728196297926907865592266191263617}{3026045400324734961865019277486009511598483609} a^{13} + \frac{38604755040470767261352639592047428658568932}{432292200046390708837859896783715644514069087} a^{12} - \frac{1166620651773410626057587229891723992787624071}{3026045400324734961865019277486009511598483609} a^{11} + \frac{627479886387654980946896732781644660177467232}{3026045400324734961865019277486009511598483609} a^{10} - \frac{510440313289961899596676221132714941413086129}{3026045400324734961865019277486009511598483609} a^{9} - \frac{157186841149099003437664464458755570247182716}{3026045400324734961865019277486009511598483609} a^{8} + \frac{664325078571085729069116679625327533141606197}{3026045400324734961865019277486009511598483609} a^{7} - \frac{1155609342163267672269514582111120896995324849}{3026045400324734961865019277486009511598483609} a^{6} - \frac{1164502078480570959179153468774046731409580888}{3026045400324734961865019277486009511598483609} a^{5} + \frac{19693972799911420941596630197983654771224734}{432292200046390708837859896783715644514069087} a^{4} + \frac{162058160653801980639834181839854815170073559}{432292200046390708837859896783715644514069087} a^{3} - \frac{18597009537992607777266177059515695925278673}{64383944687760318337553601648638500246776247} a^{2} + \frac{1330122179750534892025537667339373693235312873}{3026045400324734961865019277486009511598483609} a - \frac{1213212550720481542905210206433220692008069809}{3026045400324734961865019277486009511598483609}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{24}\times C_{6240}$, which has order $4792320$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |