Normalized defining polynomial
\( x^{16} - 2 x^{15} - 13 x^{14} + 13 x^{13} + 43 x^{12} + 371 x^{11} + 911 x^{10} - 2412 x^{9} - 9712 x^{8} - 21167 x^{7} - 2902 x^{6} + 137244 x^{5} + 452160 x^{4} + 926259 x^{3} + 1251998 x^{2} + 1086394 x + 680627 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5032157532379666474146082193=17^{11}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4651130553864586533799951815541383633750299} a^{15} + \frac{2252279574020360633763915615300925165754605}{4651130553864586533799951815541383633750299} a^{14} - \frac{300693035658017294455829716221264752842352}{4651130553864586533799951815541383633750299} a^{13} - \frac{531852541810872634528348353685951739842527}{4651130553864586533799951815541383633750299} a^{12} - \frac{1675656728404772271497781401007557118044963}{4651130553864586533799951815541383633750299} a^{11} + \frac{1196495328381757936183391198860468128859021}{4651130553864586533799951815541383633750299} a^{10} + \frac{1880061775023338361314912825102948494918473}{4651130553864586533799951815541383633750299} a^{9} - \frac{473899317930473385779699896191648846814106}{4651130553864586533799951815541383633750299} a^{8} - \frac{230730000013366032101949663398393179846225}{4651130553864586533799951815541383633750299} a^{7} + \frac{585644743568301536381594529911075126260568}{4651130553864586533799951815541383633750299} a^{6} + \frac{2255075826338449452808199478678162552117978}{4651130553864586533799951815541383633750299} a^{5} - \frac{274337669409960108504420581970455997417143}{4651130553864586533799951815541383633750299} a^{4} - \frac{1207853639093382974406515320165409605206677}{4651130553864586533799951815541383633750299} a^{3} - \frac{1690224798338862809792016128630361474909093}{4651130553864586533799951815541383633750299} a^{2} - \frac{83127333870458567440233292590996200113260}{4651130553864586533799951815541383633750299} a + \frac{1024863617625704104240025550237317952428134}{4651130553864586533799951815541383633750299}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1821925.34206 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 4.0.59177.1, 8.0.59532594593.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.5 | $x^{8} + 459$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.4.2 | $x^{8} - 4913 x^{2} + 918731$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 59 | Data not computed | ||||||