Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 60 x^{13} + 86 x^{12} - 180 x^{11} + 488 x^{10} - 668 x^{9} + 613 x^{8} - 924 x^{7} + 2088 x^{6} - 1944 x^{5} + 1152 x^{4} - 1512 x^{3} + 2592 x^{2} - 1296 x + 324 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(503017767708917760000=2^{32}\cdot 3^{8}\cdot 5^{4}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{9} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{12} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{6} - \frac{1}{6} a^{2}$, $\frac{1}{168} a^{11} + \frac{1}{168} a^{10} - \frac{1}{28} a^{9} + \frac{1}{84} a^{8} + \frac{29}{168} a^{7} - \frac{23}{168} a^{6} - \frac{41}{84} a^{5} + \frac{1}{28} a^{4} - \frac{17}{84} a^{3} - \frac{5}{28} a^{2} + \frac{1}{7}$, $\frac{1}{1512} a^{12} + \frac{1}{378} a^{11} + \frac{53}{1512} a^{10} + \frac{1}{28} a^{9} - \frac{7}{216} a^{8} + \frac{17}{126} a^{7} - \frac{151}{1512} a^{6} + \frac{83}{756} a^{5} - \frac{179}{378} a^{4} - \frac{2}{63} a^{3} - \frac{11}{28} a^{2} + \frac{1}{14} a + \frac{8}{21}$, $\frac{1}{1512} a^{13} + \frac{1}{1512} a^{11} + \frac{29}{756} a^{10} - \frac{7}{216} a^{9} - \frac{25}{756} a^{8} + \frac{257}{1512} a^{7} + \frac{169}{756} a^{6} - \frac{29}{63} a^{5} - \frac{23}{756} a^{4} - \frac{115}{252} a^{3} - \frac{10}{21} a^{2} + \frac{2}{21} a + \frac{17}{42}$, $\frac{1}{4536} a^{14} + \frac{1}{4536} a^{13} - \frac{1}{4536} a^{12} - \frac{1}{378} a^{11} - \frac{17}{2268} a^{10} + \frac{19}{504} a^{9} + \frac{179}{4536} a^{8} + \frac{157}{1134} a^{7} + \frac{109}{648} a^{6} - \frac{50}{189} a^{5} + \frac{179}{756} a^{4} + \frac{23}{126} a^{3} + \frac{125}{252} a^{2} + \frac{5}{42} a - \frac{5}{42}$, $\frac{1}{2089816848} a^{15} - \frac{111773}{2089816848} a^{14} + \frac{401525}{2089816848} a^{13} - \frac{73957}{232201872} a^{12} + \frac{80327}{298545264} a^{11} - \frac{15815143}{696605616} a^{10} + \frac{42354743}{2089816848} a^{9} - \frac{82846391}{2089816848} a^{8} + \frac{75734357}{1044908424} a^{7} + \frac{10055}{74376} a^{6} - \frac{10947077}{24878772} a^{5} - \frac{10829533}{24878772} a^{4} + \frac{12132439}{29025234} a^{3} - \frac{143848}{691077} a^{2} - \frac{69205}{19350156} a + \frac{4770209}{19350156}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1321511}{522454212} a^{15} + \frac{712847}{38700312} a^{14} - \frac{69712381}{1044908424} a^{13} + \frac{102743705}{1044908424} a^{12} - \frac{17507071}{130613553} a^{11} + \frac{28111795}{74636316} a^{10} - \frac{1079361959}{1044908424} a^{9} + \frac{1086306919}{1044908424} a^{8} - \frac{146273707}{174151404} a^{7} + \frac{10581217}{4685688} a^{6} - \frac{410983043}{87075702} a^{5} + \frac{122367787}{43537851} a^{4} - \frac{2668132}{1612513} a^{3} + \frac{258302603}{58050468} a^{2} - \frac{18430969}{3225026} a + \frac{9234445}{4837539} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 121122.735511 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times Q_8:C_2^2$ (as 16T69):
| A solvable group of order 64 |
| The 34 conjugacy class representatives for $C_2\times Q_8:C_2^2$ |
| Character table for $C_2\times Q_8:C_2^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |