Normalized defining polynomial
\( x^{16} - 3 x^{15} + 80 x^{14} - 458 x^{13} + 1725 x^{12} - 15981 x^{11} + 16603 x^{10} - 96450 x^{9} + 409565 x^{8} + 2849968 x^{7} + 5772337 x^{6} + 44508608 x^{5} - 27303927 x^{4} + 143015618 x^{3} + 481082447 x^{2} - 1618135041 x + 1134515881 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4996656476111243051576134097472929233=53^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{188296781055979671277839475368521177198730626515261587060903892890791} a^{15} - \frac{7302763546541464406210774713053622010680508652247158428852018095445}{188296781055979671277839475368521177198730626515261587060903892890791} a^{14} + \frac{76357544179845974456534162771212328590213832068923796979076641333804}{188296781055979671277839475368521177198730626515261587060903892890791} a^{13} - \frac{6048705588997714854380394353864849836439136841527009902829679863841}{188296781055979671277839475368521177198730626515261587060903892890791} a^{12} + \frac{15770634023829464934468079587113644681621716530836298155012516326283}{188296781055979671277839475368521177198730626515261587060903892890791} a^{11} + \frac{55242309962539013772958735157949835615707129917614309565414299038975}{188296781055979671277839475368521177198730626515261587060903892890791} a^{10} - \frac{12128626872387541397214642010966982867635854842054783161452350853254}{188296781055979671277839475368521177198730626515261587060903892890791} a^{9} + \frac{52230114084075422160427313103246041547222172543353884430485504641814}{188296781055979671277839475368521177198730626515261587060903892890791} a^{8} + \frac{51949889240139217541619456270719889047819539679176153881901624594570}{188296781055979671277839475368521177198730626515261587060903892890791} a^{7} - \frac{34096554471950092706814956234023632781383317405592465662694677147319}{188296781055979671277839475368521177198730626515261587060903892890791} a^{6} - \frac{25883808170792598073879288820146251105826507634600076611484693041954}{188296781055979671277839475368521177198730626515261587060903892890791} a^{5} + \frac{31370158614108503669678170955881990314020328078312151076788492668774}{188296781055979671277839475368521177198730626515261587060903892890791} a^{4} + \frac{57184635559554859576723472298518670335784450159835119563758429992464}{188296781055979671277839475368521177198730626515261587060903892890791} a^{3} + \frac{8330475039277387418569289475224832767918367165460092305474224191311}{188296781055979671277839475368521177198730626515261587060903892890791} a^{2} - \frac{55943985774264048711727189069968234281707034734007215637376001389129}{188296781055979671277839475368521177198730626515261587060903892890791} a + \frac{46518936607702393673729452625217135490148141526165262557026350590485}{188296781055979671277839475368521177198730626515261587060903892890791}$
Class group and class number
$C_{176578}$, which has order $176578$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1675810.87182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.8.4.2 | $x^{8} - 148877 x^{2} + 142028658$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 53.8.0.1 | $x^{8} + x^{2} - x + 33$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97 | Data not computed | ||||||